
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Reducing Web Application Vulnerabilities
through the Informed Choice of

Webframeworks, Libraries and Automated
Tools

Moritz Hüther



DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Reducing Web Application Vulnerabilities
through the Informed Choice of

Webframeworks, Libraries and Automated
Tools

Reduzierung der Schwachstellen von
Webapplikationen durch die bewusste

Wahl von Webframeworks, Bibliotheken
und automatisierten Werkzeugen

Author: Moritz Hüther
Supervisor: Prof. Dr. Florian Matthes
Advisor: Sascha Nägele, M.Sc.
Submission Date: 15.06.2021



I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.06.2021 Moritz Hüther



Acknowledgments

I would like to thank my advisors Sascha Nägele and Richard Hudson for their support
throughout the thesis as well as Professor Matthes and the Technical University of
Munich for this opportunity.

Moreover, I would also like to thank the msg systems ag and in particular msg Research
for all of their guidance, knowledge, and supporting words.

Finally, I thank my family and friends for all their ongoing support and encouragement
during this time.



Abstract

Web-based applications are becoming a common choice for companies to deliver their
services to their customers. To achieve this, they store data relating to their customers,
making them a target for cybercriminals. These criminals make use of a variety of
different errors and the vulnerabilities they cause to take control of the system, steal
data or make the system unavailable. The costs generated through such attacks are
rising annually, thus the security of web applications should be of a high priority.
Therefore, the selection of an appropriate technology stack should be carried out with
security in mind.
This thesis proposes an evaluation of used web application frameworks, libraries, and
automated tools which are commonly used nowadays. The evaluation highlights
different levels of security that can be achieved through the selection of common
solutions containing web framework-native functionalities in combination with third-
party libraries. Finally, automated tools such as Static Application Security Testing
tools will be evaluated based on the level of support they give to make the previously
defined solutions more secure. The result of these evaluations will give an overview of
the coverage of vulnerabilities through these solutions and tools.

iv



Kurzfassung

Webanwendungen werden für Unternehmen zu einer gängigen Wahl, um ihren Kunden
ihre Dienste bereitzustellen. Zu diesem Zweck speichern die Webanwendungen Daten
über ihre Kunden und machen sie dadurch zu einem Ziel von Cyberkriminellen. Diese
Kriminellen nutzen Codierungsfehler und die Schwachstellen, die sie verursachen, um
das System auszunutzen, Daten zu stehlen oder das System unverfügbar zu machen.
Die durch solche Angriffe verursachten Kosten steigen jährlich, daher sollte die Sicher-
heit von Webanwendungen eine hohe Priorität haben. Die Auswahl eines geeigneten
Technologie-Stacks sollte deshalb unter Berücksichtigung von Sicherheitsaspekten erfol-
gen.
Diese Arbeit schlägt eine Evaluierung der heute häufig verwendeten Webanwendungs-
Frameworks, Bibliotheken und automatisierten Tools vor. Diese Evaluierung zeigt
verschiedene Sicherheitsstufen auf, die durch die Auswahl von Lösungen bestehend
aus nativen Webframework-Funktionen in Kombination mit Bibliotheken von Drittanbi-
etern erreicht werden können. Schließlich werden automatisierte Werkzeuge wie Static
Application Security Testing Tools anhand des Grads der Unterstützung bewertet, den
sie bieten, um die zuvor definierten Lösungen sicherer zu machen. Das Ergebnis dieser
Bewertungen ergibt einen Überblick über die Abdeckung von Schwachstellen durch
diese Lösungen und Werkzeuge.

v



Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals 5
2.1 Input-based Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 XML External Entities (XXE) . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Cross-Site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Insecure Deserialization . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Denial Of Service (DoS) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Input Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.7 Open Redirects And Forwards . . . . . . . . . . . . . . . . . . . . 13

2.2 Permission- and Access-based Vulnerabilities . . . . . . . . . . . . . . . . 14
2.2.1 Broken Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Broken Access Control . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Cross-Site Request Forgery . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Configuration-based Vulnerabilities . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Sensitive Data Exposure . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Security Misconfiguration . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Using Components With Known Vulnerabilities . . . . . . . . . . 25
2.3.4 Insufficient Logging And Monitoring . . . . . . . . . . . . . . . . 26

2.4 Automated Tools and Processes . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Automated Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Contents

3 Related Work 30

4 Methodology 31
4.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 First Interview Group . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Second Interview Group . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Library Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Vulnerabilities 41
5.1 Vulnerability Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Scope Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Mapping of Vulnerabilities to Solutions 46
6.1 Input-based Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.2 XML External Entities . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Cross-Site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.4 Insecure Deserialization . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.5 Denial Of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.6 Input Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.7 Open Redirects And Forwards . . . . . . . . . . . . . . . . . . . . 63

6.2 Permission- and Access-based Vulnerabilities . . . . . . . . . . . . . . . . 63
6.2.1 Broken Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Broken Access Control . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Cross-Site Request Forgery . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Configuration-based Vulnerabilities . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 Sensitive Data Exposure . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Security Misconfiguration . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Using Components With Known Vulnerabilities . . . . . . . . . . 84
6.3.4 Insufficient Logging And Monitoring . . . . . . . . . . . . . . . . 85

7 Evaluation of Automated Tools 90
7.1 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Automated Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.1 Sonarqube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



Contents

7.2.2 LGTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Discussion 100
8.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9 Conclusion 107
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Framework and Library Versions 110

B Questionnaires 112
B.1 Demographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2 First Round of Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . 112
B.3 Second Round of Expert Interviews . . . . . . . . . . . . . . . . . . . . . 116

List of Figures 118

List of Tables 119

Bibliography 120

viii



1 Introduction

Nowadays, web-based applications have become a very common choice for companies
to provide their services to their customers [1]. Data relating to customers, which is
often the target of cybercriminals, needs to be stored and maintained by these web
applications. By exploiting vulnerabilities, which are security weaknesses or flaws [2],
attackers can access this data or cause system downtimes that lead to a high monetary
loss for the company. Cybercrime has produced more than one trillion USD of cost
[3]. Especially during the COVID-19 pandemic, the amount of cybercrime incidents
that were recorded in the USA increased dramatically [4]. Hence, security should be
a high priority for web applications, especially in the selection of components, such
as frameworks or libraries, since these can have an influence on the security of web
applications [5].
Traditionally, web applications were built statically in HTML and enhanced with
JavaScript to perform a certain logic. The majority of repetitive tasks required to
build a web application are now abstracted by web application frameworks in order to
reduce the complexity during development [5]. These tasks can contain, for example,
session management or input sanitization. The most commonly used client-side web
frameworks are React, Vue.js and Angular [6] which produce HTML5 Single-Page Ap-
plications (SPA) that change their rendered content dynamically. In addition, different
server-side web frameworks exist such as Express or Spring Boot that often present a
Representational State Transfer (REST) Application Programming Interface (API) [7] to
access resources from a database management system. Using these frameworks, the
automation of security-related functions can be achieved, which however can also lead
to security issues, if the web framework implements these incorrectly [5]. In addition to
the usage of frameworks, developers often make use of third-party libraries to quicken
the development process by using them to implement further recurring tasks [8]. The
number of these libraries is increasing daily [9] making it harder for developers to
choose an appropriate solution [8]. Similar to the web frameworks, the security of the
functionalities provided by the libraries is not guaranteed and can therefore lead to
security flaws. Another approach to support the security of a web application is the
usage of automated tools [10]. In particular, Static Application Security Testing (SAST)
tools, which recognize patterns in source code based on static analysis can be embed-
ded into the development process to reduce vulnerabilities [10]. Finally, the inclusion

1



1 Introduction

of security-related processes, as for example displayed in the Security Development
Lifecycle of Microsoft [11], can further enhance the security of web applications.
A large number of vulnerabilities need to be considered when developing a web ap-
plication. Different sources like the Open Web Application Security Project (OWASP)
Foundation [12] or the Common Weakness Enumeration (CWE) [13] propose lists of
relevant security-related considerations. Even so, a majority of the web applications are
still open to attacks [14] through the vulnerabilities whose prevention mechanisms are
known. Thus, a solution that helps developers write secure code by default, meaning
without having security as a major concern during development, needs to be proposed.
However, the solutions that can be found in the literature to this problem are not
sufficient. They either evaluate web framework-specific solutions solely for the Cross-
Site Scripting vulnerability and within none of the above-mentioned widely used web
frameworks [5] or evaluate libraries mainly based on non security-related characteristics
[8], [9], [15], [16]. Moreover, comparisons of SAST tools do exist but do not include any
evaluation of the constraints they provide [17].
Therefore, this thesis is providing in-depth insights into framework-native or library-
provided functions that help to deal with common vulnerabilities of web applications
[12], [13], [18]. The above-mentioned frameworks were chosen to be investigated be-
cause of their high popularity among developers [6]. They will be evaluated based on
the security they provide according to recommendations by sources like the OWASP
Foundation, the National Institute of Standards and Technology (NIST) and further
literature. Secure solutions containing web framework-native functionalities and li-
braries will be presented and further enhanced through the evaluation of the constraints
commonly used SAST tools provide. Additionally, an overview of the vulnerabilities
and how well they are covered through the proposed solutions will be given which
will display which tasks are currently, and most likely also in the future, not coverable
through frameworks or libraries.
These results can, on the one hand, be used by software developers or architects to
inform themselves about vulnerabilities, their prevention mechanisms, and which solu-
tions exist for them. On the other hand, this thesis is enhancing the current research
by reviewing the ability of modern web frameworks to deal with a broad spectrum of
vulnerabilities and proposing important security-related characteristics of libraries.

1.1 Research Objectives
The main object of this master’s thesis is to evaluate existing solutions for web applica-
tion vulnerabilities that consist out of framework-native functionalities, libraries, and
automated tools. Hence, the following research questions were formulated to guide

2



1 Introduction

this process.

Research Question 0.1: Which vulnerabilities are relevant for web applications?
The first sub-research question is necessary to identify which vulnerabilities have the
highest impact on web applications. The resulting list of vulnerabilities will be used as
a baseline for the following research questions.

Research Question 1: Which vulnerabilities are covered by framework-native functional-
ities?
Within this research question, the first part of a mapping of solutions to vulnerabilities
will be created. In order to answer this question, existing solutions within the above
named frameworks for the previously defined vulnerabilities will be researched and
evaluated.

Research Question 2: How can libraries support the coverage of the vulnerabilities?
Since the solutions proposed in the first research question can either be missing com-
pletely or do not cover the vulnerability holistically, further libraries are researched that
support a web framework’s native solution or generate their own solutions. Hence, the
most popular libraries for certain tasks will be researched and evaluated based on the
recommendations within the literature

Research Question 2.1: How can similar libraries be compared with one other?
As described above, a vast assortment of libraries and therefore an overlapping of
functionalities exist. To deal with similar libraries, a metric will be defined on which
these libraries will be evaluated to support research question 2.

Research Question 3: Which automated tools and processes can be used to reduce vul-
nerabilities?
Automated tools and processes to make solutions more secure are to be researched
within this research question. To achieve this, the constraints SAST tools provide will
be evaluated on how they help to cover problems of the solutions defined in research
questions 1 and 2.

1.2 Research Approach
The research was conducted based on the design science research approach. This
approach is proposed by Hevner and Chatterjee [19] and was chosen because it focuses
on the creation and evaluation of innovative artifacts within a problem domain. The

3



1 Introduction

artifacts that this thesis aims to provide are solutions that can reduce web application
vulnerabilities. This thesis will follow the guidelines Hevner and Chatterjee [19]
propose. To establish a knowledge base, multivocal literature was researched, and to
evaluate these findings expert interviews were conducted. A detailed description of
the used methodology can be found in chapter 4.

1.3 Outline
The thesis is structured as follows. In chapter two, the theoretical fundamentals of
vulnerabilities and the corresponding prevention techniques are described. Related
work can be found in chapter three. In the fourth chapter, the research methodology
will be explained including information about the literature research, the evaluation,
the expert interviews, and the data collection. Different relevant vulnerabilities and
their covered aspects are defined in chapter five. Chapters six and seven propose
solutions through the use of frameworks, libraries, and automated tools. Chapter eight
will discuss the findings and list limitations. A summary of the answers to the research
questions and an outlook for further research will be given in chapter nine. Finally, the
appendix contains tables about the reviewed frameworks and libraries and also the
questionnaires.

4



2 Fundamentals

The theoretical backgrounds of the vulnerabilities, that are further evaluated within the
thesis, are established in this chapter. It is divided into three groups of vulnerabilities,
and tools and processes. An overview of all vulnerabilities can be found in chapter 5.

2.1 Input-based Vulnerabilities
First of all, vulnerabilities that are related to user input are presented. These include
Injection, XML External Entities, Cross-Site Scripting, Insecure Deserialization, Denial
of Service, Input Validation and Open Redirects and Forwards.

2.1.1 Injection
Injection attacks are possible if certain commands are created, depending on the input
the system receives. Without proper handling of these inputs, an attacker can inject
code into commands and thus change the intended behavior of a query or command.
The most common types of such attacks are SQL injections. [20]
The following will cover existing literature concerned with SQL and NoSQL injection
attacks.

2.1.1.1 SQL Injection

If a web application is vulnerable to SQL injection attacks, an attacker can manipulate
the queries that are sent to the connected database [21]. By injecting malicious input
into a SQL query, the query can be tampered with to create, read, update or delete data.
Halfond, Viegas, Orso, et al. [22] listed the following mechanisms to inject data into a
SQL query: through user input, cookies, server variables, or second-order injection,
which describe the storage of user input that can lead to a SQL injection at a later
point in time. Using these mechanisms, attackers can try to inject commands into a
SQL query. If the inclusion of attacker-provided inputs is successful, different types of
SQL injection attacks can be executed. These attacks include tautologies, union queries,
illegal or logically incorrect queries, and more [22]. Listing 2.1 display an example of a
SQL injection using a tautology. The input of a statement that always evaluates to true,

5



2 Fundamentals

the tautology, will result in all users being returned by the query. The impact of these
attacks does not only pertain to the database, but also to evading authentication [22] or
accessing the underlying operating system [23].
To prevent this vulnerability, multiple countermeasures can be defined. First of all,
validating input that is received can be used as a countermeasure [22]. However, as
stated in [24] in order to prevent a SQL injection a developer should "prevent user-
supplied input which contains malicious SQL from affecting the logic of the executed
query". Therefore, only relying on input validation should not be considered sufficient
and only used as a secondary level of defense. Furthermore, both sources propose the
use of encoding or escaping of the input that is supplied by the user to filter out certain
characters that can be interpreted as SQL commands (for example the character ’). Also,
they both describe similar approaches for guaranteeing that only secure values enter the
query. Halfond, Viegas, Orso, et al. [22] proposes the positive pattern matching which
can be compared to whitelisting input, while the OWASP Foundation [24] proposes
an allow-list that contains the values that are allowed and under which circumstances
these are chosen. The most important approaches presented by the OWASP Foundation
[24] are prepared statements and stored procedures. In the former, code and data are
separated from each other. The developer first prepares a query with placeholders and
then later binds the data to the query. Hence, a SQL interpreter can differentiate between
the predefined code and what is entered by the user. The data then is, depending
on the type that is bound to the prepared statement, interpreted as a number or a
text. Thus, injected code can no longer alter the query. Stored procedures on the other
hand need to be used with caution because stored procedures can be created with
dynamic content [22], [24]. Furthermore, many other techniques have been researched.
Kumar and Pateriya [21] surveyed existing countermeasures within the literature.

1 var input = "’ OR 1=1";
connection.query("SELECT * from user WHERE name = ’" + input,

3 function(err, rows, fields) {
//...

5 });

Listing 2.1: Tautology SQL Injection Attack Using MySQL in Java

2.1.1.2 NoSQL Injection

NoSQL injection attacks work similarly to SQL injection attacks. The injection of
certain carefully crafted inputs can lead to the manipulation of the data query and
therefore result in leakage or manipulation of data. Different types of NoSQL injection
attacks were defined by Ron, Shulman-Peleg, and Puzanov [25]: Tautologies, using

6



2 Fundamentals

the $ne operators. Union queries, in which the $or operator is passed with the input.
These attacks allow the attacker to add an alternative constraint, and therefore change
the behavior of the query. Furthermore, the injection of JavaScript code through for
example the $where or $mapReduce operators is possible since NoSQL databases can
execute JavaScript code [26]. Finally, piggy-backed queries, in which a second query
is added to the intended query, can be executed. In addition to the attacks proposed
by the authors, [27] proposes a vulnerability through the $where operator in which
classical SQL injections are made possible by defining a WHERE clause.
Most of these attacks make use of the operators which are defined by NoSQL databases
such as MongoDB. These operators include helpers for comparisons like $gt for greater
than or $ne for not equals, as well as operators to help evaluating the query like $where
(see [28] for more operators). The first set of operators can also be used as a payload to
achieve a tautology or a union-query attack. If we consider a PUT REST endpoint as
displayed in Listing 2.3, an attacker could set the payload in such a way, that it would
cause the query to return all data within the collection. The payload, which is sent in
the body of the request, must contain a further JSON object. This object contains an
operator as key and specific data as value. The data must be chosen in such a way, that
it almost always evaluates to true in combination with the operator. Hence as shown
in the example, the operator $ne as key, with " " as value evaluates to true if the title
is not equal to " ". Consequently, every document in the collection, whose title is not
empty, will be returned by the find method. Furthermore, the $where operator, can
be used to pass JavaScript code to MongoDB to change the query results. It gives the
possibility to write code such as found in the second example of Listing 2.3. Since this
input accepts JavaScript as input, an attacker can also manipulate the query to receive
all documents of the collection. To do so, the attacker needs to make a specific request,
which has similarities with SQL injections. The request can for example include a
tautology as seen in the example. Thus, the query results to true for every document.
For further examples please refer to [25].
Ron, Shulman-Peleg, and Puzanov [25] propose the usage of well-validated sanitization
libraries and also scanning for injection vulnerabilities with SAST or DAST tools is
recommended. Spiegel [29] proposed the use of typecasting and dynamic code analysis.
In addition, to deal with JavaScript-based injections, the execution of such scripts can
be disabled in for example MongoDB.

1 collection.find({’a’: 3}).toArray(function(err, docs) {
//docs = All documents with attribute a = 3

3 });

Listing 2.2: Usage of mongodb’s find Method in Express

7



2 Fundamentals

1 //Query operators:
// PUT Request with body = {"title" : "{"$ne": " "}"}

3 app.post(’/operatorInjectionUnsanitized’, function (req, res) {
let title = req.body.title

5 collection.find({title: title}).toArray(function(error,docs) {
//Business Logic - Find all elements with the title and change a field

7 //Return all edited docs
res.send(docs)

9 });
});

11

//$where operator:
13 //PUT Request with body = {"title" : " ’ || ’a’==’a"}

app.put(’/whereInjectionUnsanitized’, function (req, res) {
15 let title = req.body.title

let unsanitizedQuery = { $where: ‘this.title == ’${title}’‘ }
17 mytestcoll.find(unsanitizedQuery).toArray(function(erree,docs) {

//Business Logic - Find all elements with the title and change a field
19 //Return all edited docs

res.send(docs)
21 });

});

Listing 2.3: Operator Injection in MongoDB Using Express

2.1.2 XML External Entities (XXE)
XXE attacks are possible if an XML parser allows references to external entities that for
example come from user input. An external entity is defined within an XML document
type definition with for example the following code statement: <!ENTITY err "An
error occurred">. After the external entity has been defined, it can be referenced
within the document by starting with a & character and ending with the ; character. In
the example above, the entity is referenced by adding &err; to the document and the
text will be displayed. The SYSTEM keyword offers the possibility to refer to an URL
that defined the location where the value of the entity can be found. A possible attack
could now include certain locations, such as secret files, that can be loaded through
this entity. This could lead to the leakage of sensitive information such as passwords or
configurations. Furthermore, the entities can be referenced within the declaration of

8



2 Fundamentals

another entity which can lead to a popular XXE attack that is called the ’Billion Laughs’
attack. The recursive referencing of entities results in the expansion of used storage
and CPU usage and therefore denying the service for other users. The payload of such
an attack can be seen in Listing 2.4. [30]
The detection and prevention mechanisms proposed by Hogue [30] include the usage
of tools such as Burp Suite to test the application for the XXE vulnerability; the usage
of intrusion detection systems that recognize the usage of <!DOCTYPE> within user
input and reducing the damage of a possible attack by reducing the CPU power
a parser can use and limiting its access to the actual application. However, the
OWASP Foundation [31] states that the "safest way to prevent XXE is always to
disable DTDs (External Entities) completely". In case this is not possible, external
entities must be disabled, which is often depending on the underlying parser [31].

<!DOCTYPE root [
2 <!ELEMENT root ANY>

<!ENTITY LOL "lol">
4 <!ENTITY LOL1 "&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;">

<!ENTITY LOL2 "&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;
6 &LOL1;">

...
8 <!ENTITY LOL9 "&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;

&LOL8;">
10 ]>

<root>&LOL9;</root>

Listing 2.4: Billion Laughs Attack

2.1.3 Cross-Site Scripting
The embedding of malicious scripts into the code rendered and executed by the browser
is called Cross-Site Scripting (XSS) attack. Attackers use the lack of validation on the
client- and/or the server-side to embed code on the client-side of other users. This
code can for example if they are not secured in other ways, access cookies, or other
personal information. The injected input is not limited to JavaScript and therefore
opens an enormous attack surface and can also lay the foundation for further attacks
[32]. Additionally, another possibility to execute injected code opens up if the web
application uses the input of users inside of URLs. If for example the attribute href
of <a> (for further examples, see [33]) takes input from users, and attackers can enter
URLs using the javascript: scheme. This scheme makes it possible to write code
within the URL [34] and consequently be used to perform an XSS attack. Another

9



2 Fundamentals

possibility to execute code is enabled if user input is inserted into style sheets. For
example, the usage of the url CSS function can lead to XSS attacks through the URLs
described above.
Furthermore, different types of XSS attacks exist [35]. The stored XSS attack is an
attack in which input that was previously injected by an attacker is received from the
server by a user. This attack can take place if the server does not validate input before
saving it to its database. The reflected XSS attack, on the other hand, does not need
the server to store the input in the database but relies on the server to return the input
directly, like through an error message which is containing the input. These types of
attacks can also be mitigated through server-side prevention techniques [36]. The third
type differs from the others because it does not need interaction with the server. It is
called DOM-based XSS attack [37] (DOM standing for Document Object Model). This
attack relies on the website to write data on the DOM without securing it. This type is
especially important for the HTML5 Single Page Applications that are created through
the reviewed frameworks since they only consist of one page that changes the elements
in the DOM in case a new page is rendered.
The OWASP Foundation [33] proposes a variety of different rules to prevent XSS attacks.
In general, no untrusted data should be put into places that can execute JavaScript
code. Therefore, data that is put inside of an HTML document, into HTML attributes,
between script tags, inside of CSS, or into a URL should be encoded in a way to make
it secure. Moreover, HTML can be sanitized, which removes potentially malicious
content, and URLs that contain the :javascript scheme should be avoided out of the
reasons seen above. In addition, another assortment of rules can be found solely for
DOM-based XSS attacks [38]. To conclude, data that is added to the DOM, via for
example the innerHTML method, should be made trustworthy.

2.1.4 Insecure Deserialization
In, for example, Java, insecure deserialization is possible, because within Java bespoke
serialization and deserialization functionalities can be defined. To do so a developer
has first of all to implement the Serializable interface. This interface offers the
functionality to implement the readObject and writeObject methods, that can be
used to customize the serialization and deserialization process. This process can be
triggered through the usage of ObjectInputStream or ObjectOutputStream. In this
case, an object is converted to byte streams and converted back. Objects, that were
serialized through Java, can be easily recognized through their first few characters.
In case the serialized Java object is in the hexadecimal format it starts with "aced"
and if it is Base64 encoded it starts with "rO0" [39]. Furthermore, the configuration
application/x-java-serialized-object of the Content-type header exists which

10



2 Fundamentals

also indicates serialized Java objects. Since determining whether a serialized object is
being used by the application is very straightforward, an attacker can make use of this.
When untrusted data is deserialized multiple vulnerabilities arise. First of all, a
serialized object that is not enhanced with any integrity checks can be tampered with.
Thus, attackers can for example add further access rights to their accounts. Furthermore,
the deserialization process is executed before any type casting is applied. This means
that in the case of this code (myObject)ois.readObject();, the ObjectInputStream
(here only "ios") will read and deserialize the object before it is casted to a specific type.
Therefore, an attacker could create any Java object that is contained in the classpath
and in case the execution of methods is bound to the construction of the object, these
methods will be called. Such an example is shown in Listing 2.5 in which a class is
defined that can be used to exploit the said deserialization process of Java. If this class
is deserialized, the readObject method is called, and therefore the command the object
was serialized with is executed. As described above, the type casting is done afterward,
and in this case, resulting in an error. Even so, the code will already have been executed.
Notably, the attack could only succeed because the DeserializationExploit class was
within the classpath of the Java project. Different CVEs describe current real-world
examples of this type of vulnerability. An example can for example be seen in CVE-
2021-3160. Additionally, the OWASP Foundation [40] displays an example, in which
the deserialization of a specific object can also lead to a denial of service attack.
In order to prevent such an attack, the OWASP Foundation [12] proposes the following
requirements:

1. Objects that are serialized should either be encrypted or use other integrity checks.
2. Strict type constraints should be considered before creating the object. This should

not be used as the only layer of defense.
3. The deserialization code should be run on an environment that only has minimal

privileges.
4. The network requests going out from a unit that does deserialization should be

monitored.
5. The deserialization process should be monitored.

11



2 Fundamentals

1 public class DeserializationExploit implements Serializable {

3 private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException{

5 in.defaultReadObject();
Runtime.getRuntime().exec(command);

7 }
}

Listing 2.5: Exploiting Java Deserialization

2.1.5 Denial Of Service (DoS)
A denial of service attack describes the malicious act of an attacker to hinder a service
from working correctly, denying the service to legitimate users. The attack itself can
include the flooding of the service with network traffic or the saturation of resources
such as CPU or RAM. For example, an attacker can establish a large number of TCP
requests, in which the handshake is not finished by the attacker, blocking all ports
accessible by the service and thus preventing legitimate users from connecting to the
server. In addition, in case an attacker uses multiple clients to attack a service, the
attack is called distributed denial-of-service attack. Through this, certain rate-limiting
functionalities can be avoided by attackers. [41]
Mainly three different types of DoS attacks can be named [42]. First, the volume-based
attacks in which a high volume of content is sent to a service. It is measured in bits
per second. Protocol attacks in which attackers misuse protocols such as the above
described attack called SYN flood (also called layer three and four attacks). Here, the
magnitude is defined by the packets that are sent per second. Finally, application-layer
attacks (also called layer 7 attacks) exist that make use of HTTP by either attacking it
with slow HTTP attacks, flooding the service with GET or POST requests, or crafting
certain requests to exploit vulnerabilities of the service. The requests that are sent per
second define the magnitude of the attack.
In order to protect a service from a DoS attack, the literature proposes the usage of
filer mechanisms [43], [44]. Different techniques such as ingress/egress, hop-count,
and history-based filtering can be used to filter malicious from legitimate traffic. The
majority of these techniques have in common that they form a protective layer over the
services so that the malicious content cannot enter them in the first place. Furthermore,
the OWASP Foundation [45] proposes further prevention techniques. These include
input validation (see subsection 6.1.6), access control (subsection 6.2.2), rate limiting,
and the usage of commercial cloud filter services.

12



2 Fundamentals

2.1.6 Input Validation
Input validation is defining certain restrictions for a variable and testing the user-
provided input against these restrictions. The restrictions can for example contain the
data type, its size, a valid range and the content of the data [46]. Shar and Tan [47]
propose additional input validation methods such as Null, Containment, Match and
Regex-match. In [48] two strategies for input validation are defined. The syntactic
validation enforces that the data has the correct syntax like a price in Euro being in
the format 123.456,78 e. The second one is the semantic validation strategy, which is
concerned with the values of the data being correct given the context of the application.
This means that for the use case of an online auction website, users cannot bid negative
values. In order to be compliant with these strategies, some of the restrictions above
should be used.
Preventing this vulnerability will add a second layer of security to the prevention of
different other vulnerabilities like Injection, XSS, or XXE. However, the validation of
input should not be used as a single line of defense. [24]

2.1.7 Open Redirects And Forwards
When the web application opens a new external URL within its user’s browsers, it
is redirecting the users. In contrast, if the URL is internal, meaning within the own
web application, it is forwarding the users. These technically identical processes are
declared open when they are done through user manipulable parameters. If the web
application does not do any kind of validation of the untrusted data, an attacker could
make use of this and perform phishing attacks. An example for such an open redirect
would be the following URL: http://myApp.com/?redirect=http://evilApp.com. In
case the data that is passed to the redirect parameter is provided with malicious
intent, legitimate users could be redirected to the given website while thinking they
were opening an URL to the original website. Hence, this vulnerability is offering
a baseline for phishing attacks. The heuristic defined by Shue, Kalafut, and Gupta
[49] to find a redirect within an URL consists of searching for a second usage of
http:// or https://. Wang and Wu [50] extend this heuristic by adding four further
types of redirects. These firstly include a redirect without an additional HTTP prefix
like http://myApp.de/?redirect=evilApp.de. Further, redirects that are connected to
the authentication or login process of the web application are considered. After the
successful login, a web application often redirects the user back to the point where the
authentication became necessary. Finally, the usage of other delimiters such as _ and
the inclusion of multiple HTTP prefixes within one URL are also included.
Furthermore, different mitigation strategies were proposed by Wang and Wu [50] and

13



2 Fundamentals

the OWASP Foundation [51]. First of all, the authors agree on avoiding open redirects
and forwards or at least not using user input within them as a simple countermeasure.
Moreover, both sources recommend the implementation of an interrupting page, which
tells the users that they will leave the website. Furthermore, the usage of validation
should be considered. Both propose the usage of whitelisting, Wang and Wu [50] also
make use of hashing in their approach, in order to only validate a redirect if this page
is intended to be redirected to. Another approach described by Wang and Wu [50]
makes use of the Referrer header (see subsection 2.3.2) by only accepting redirects
where the header is present and referring to the own web application. Finally, in the
case of forwarding, it should be checked whether the user is authorized or not to do
this request [51].

2.2 Permission- and Access-based Vulnerabilities
This section establishes a baseline of different authentication- and authorization-related
vulnerabilities. The fundamentals of the vulnerabilities Broken Authentication, Broken
Access Control and Cross-Site Request Forgery are listed.

2.2.1 Broken Authentication
The following will deal with the needed basics for the subcategories of this vulnerability.
The fundamentals of password policies, password hashing, general authentication, and
session management will be set out.

2.2.1.1 Password Policy

A password policy defines different limitations for passwords and therefore has an
impact on their creation process. Limitations, such as only accepting passwords with a
minimum length of six characters, can be chosen to enhance the security of an organi-
zation. [52]
Password policies are defined by different sources within the literature [53]–[56]. Since
most of the proposed properties highly overlap, the definition of the OWASP Founda-
tion [57] will be chosen as point of reference since it is based on [55] and [56]. Table 2.1
enumerates the different properties that a secure password policy must have, as stated
by the author. In addition to the individual properties, a column was added that
displays which of these properties are either realizable through a library (’Library’ in
the table) or require further engineering (’Engineering’), like for example that users can
change their passwords. In addition, ’Library/Visualization’ describes that a task can
be accomplished through a library but it needs to be embedded into the user interface.

14



2 Fundamentals

# Requirement Realization through
1 Password length at least 12 and no longer than 128

characters
Library

2 No password truncation is performed Library
3 All printable Unicode characters should be permitted Library
4 Users are able to set a different password Engineering
5 Setting another password requires both new and old

password
Engineering

6 Password is checked against a list of common pass-
words, including common words or sequential charac-
ters

Library

7 Password strength meter is provided as support Library/Visualization
8 No password composition rules such as special charac-

ters or numbers
Library

9 Rotation of passwords and requirements based on pass-
word history are not present

Engineering

10 Browsers should allow to paste content into password
fields

Configuration

11 Users can either unmask a password temporarily or
view the character that was typed lastly

Visualization

Table 2.1: Password Policy Requirements Based on the OWASP Foundation [57]

2.2.1.2 Password Hashing

Grassi, Fenton, Newton, et al. [56] emphasize that, in order to store passwords, these
must not be vulnerable to offline attacks. Therefore, the authors recommend the usage
of a key derivation function that creates a hash of the password by passing the password,
a salt, and a cost factor to the function. Salting is the usage of an additional randomly
generated string that is concatenated to the password. This can be applied as prevention
from attacks that make use of pre-computed hashes or rainbow tables. The work factor
has an impact on the computation time of the hashing function. It influences the
number of hashing iterations. In addition, the OWASP Foundation [58] suggests the
usage of an additional pepper as further defense, which is a hard-coded salt on the
client-side. Grassi, Fenton, Newton, et al. [56] recommend the usage of Password-based
Key Derivation Function 2 (PBKDF2) with a secure one-way function such as SHA256.
However, the OWASP Foundation [58] suggests the usage of Argon2id, a variant of
the algorithm Argon2, which is the winner of the Password Hashing Competition
which was held to establish a new standard in password hashing. Further alternatives

15



2 Fundamentals

mentioned in [58] are bcrypt, as a direct alternative for Argon2id, or scrypt, which is
recommended for legacy systems.
A further point with high relevance is the appropriate configuration of these algorithms,
whose recommendations can be found in the following. The algorithms Argon2 and
bcrypt create their own salt, while both PBKDF2 and scrypt require a salt. According
to [56], the length should be at least 32 bits (4 bytes). During the research, a length of
16 bytes was found to be very common.

• Argon2id: minimum memory size = 15/37 MiB, number of iterations = 2/1 and
degree of parallelism = 1 [58]

• bcrypt: work factor = 10 [58]

• PBKDF2: Iterations > 10.000 [56]; SHA1 = 720.000, SHA256 = 310.000, SHA512 =
120.000 Iterations [58]

• scrypt: cost = 64 MiB, blocksize = 8, degree of parallelism = 1 [58] (More configu-
rations can be found in the source)

2.2.1.3 Authentication

In the following subsection, security concerns of the authentication methods JSON Web
Token (JWT) and session cookies will be evaluated. JWTs are a standard, defined in
RFC 7519. A JWT consists of the three components header, payload, and signature.
The token itself is made out of three Base64 encoded strings, which represent the three
components, concatenated with dots. To ensure the integrity of the token, the third
string (the signature) contains the hash of the first two strings, which are the Base64
encoded header and payload. The header includes the used algorithm for the signing
process and the payload contains the actual data of the JWT. Session cookies, on the
other hand, make use of the HTTP Cookie headers (RFC6265) that make it possible
to store data such as sessions. Therefore, session identifiers, which are managed on
the server-side and have an association to a specific user, are commonly stored within
cookies. These cookies are when sent with every request and used for authentication.

JWT

If JWTs are used for authentication multiple security concerns could arise. Firstly, the
JWT standard does not exclude the ’none’ algorithm. Thus, an attacker can forge a JWT
which carries the data alg:"none" within its header. In case the validation process of
a library is influenced by the alg key, that is present in the header of the token, the
attacker can now dodge the verification mechanism of this specific library. Furthermore,

16



2 Fundamentals

exploiting the same security issue, it is possible to forge a valid request if asymmetric
encryption like RS256 is used. In this case, the verification method of the JWT requires
the token that is to be verified, as well as the public key to decrypt the token. An
attacker can now forge a JWT that changes the alg key from RS256 to HS256 and sign it
with the public key used as secret. Accordingly, the verification method, if its behavior
is changed through the passed alg key, will now treat the second parameter, which is
the public key, as the secret to verify the token. Since the attacker signed it with the
public key, which is in this case misused as a secret, the verification will succeed. To
prevent these issues, the used algorithm should be defined and tokens that do not use
this algorithm should be omitted. [59]
Secondly, the JWT standard does not implement a revocation mechanism. Hence,
once issued, a token will be valid until its expiration date was exceeded. The OWASP
Foundation [60] proposed the approach of introducing a block list, which includes
a JWT once a user has logged out. However, this comes with the responsibility of
managing this block list.
Thirdly, an attacker can make use of a JWT, that was gained through intercepting or
even stealing it. The attacker can then make requests to the system being identified as
the user the token belongs to. This is especially concerning because JWTs cannot be
revoked, as seen in the second concern. Therefore, the JWT should contain a fingerprint
of the user which is also included in a secure cookie as a prevention technique. Only
requests which contain a cookie that stores this fingerprint of the user, additionally to
the JWT, should be validated successfully. [60]
Fourthly, storing the JWT securely is important. Different concerns are bound to the
three storage approaches and therefore no uniform opinion was found within the
literature. If the JWT is stored within the browser’s storage, such as either the local or
the session storage, the web application needs JavaScript to not be disabled to read the
contents of these storages. Therefore, XSS attacks are theoretically made possible. The
approach of using the session storage is recommended by the OWASP Foundation [60].
Furthermore, storing the JWT inside of a cookie is also a possibility recommended by
grey literature [61], [62]. The web application then becomes vulnerable to CSRF attacks,
because the cookie, and therefore the token, is sent with every request. In conclusion,
both approaches need further security mechanisms, such as XSS or CSRF protection, to
build a secure solution.
Finally, both Sebastian Peyrott [59] and the OWASP Foundation [60] emphasize that
choosing a secure HMAC secret is necessary. Therefore, RFC 7518 describes that the key
should have at least the same length as the hash created by the used algorithm. This
means that the SHA256 algorithm should use a 256 bits strong key since it produces a
hash with 256 bits of length.

17



2 Fundamentals

Session Cookies

This paragraph will deal with the security of using cookies to store session identifiers.
Session management will be discussed in subsubsection 2.2.1.4. If session cookies
are used, the OWASP Foundation [63] proposes various security features to harden
a session cookie. Firstly, the attributes HttpOnly, Secure and SameSite should be set.
The reason for this is to avoid XSS attacks, leakage of information or CSRF attacks. The
OWASP Foundation [63] also recommends setting Domain and Path as restrictive as
possible. Finally, restricting the storage duration of the cookie is necessary, as stated by
the author. Therefore, the author recommends to set either Max-Age or Expires.

2.2.1.4 Session Management

Improper session management can lead to broken authentication. The OWASP Founda-
tion [63] proposes guidance to implement session management securely. The proposed
properties are the name of the identifier, the length of the ID, its entropy, and the value
the identifier has. The name of the identifier should be renamed to something generic to
avoid exposing used frameworks. Furthermore, in order to secure the unpredictability
of the session identifier, the OWASP Foundation [63] suggests an entropy of at least
64 bits and as stated in the source "this value is estimated to be half the length of the
session ID". Therefore, the session ID should have a length of at least 128 bits. Finally,
the value that the identifier carries must not include any personal information.
A common attack on the session management of a web application is session fixation.
This attack is possible if the session management accepts session IDs that are generated
by a user. If this is done, an attacker could set up a so-called fixed session in which
the session ID victims use to generate their session is provided by an attacker. Hence,
after the user is authenticated with this ID, the attacker can use it and make requests
with the identity of the victim. Disallowing user-provided session IDs, securing already
existing session IDs (as seen above), and the implementation of a session lifecycle is
recommended. [64]

2.2.2 Broken Access Control
This subsection contains information about the subcategories contained in Broken
Access Control. These are general authorization and Cross-Origin Resource Sharing.

2.2.2.1 Authorization

Authorization in general describes the need to have certain permissions in order to
carry out a specific action. These access controls are used by web applications to restrict

18



2 Fundamentals

functionalities to users with the correct privileges. These restrictions can be defined
through different methodologies like role-based access control (RBAC), attribute-based
access control (ABAC), and many more. Since the first two were found often in existing
solutions they will be evaluated further in the following discussion. [65]
A commonly used authorization mechanism is RBAC, in which every user has at
least one role that is used for granting permissions. Therefore, instead of defining
the permissions separately for every user, a user is given a role with the required
permissions. These roles can also be ordered hierarchically. [66]
Moreover, in contrast to RBAC, the restrictions of ABAC apply to a user depending on
the different attributes the user provides. Thus, a user’s permissions are not evaluated
based on a predefined role, but a set of rules consisting of a Boolean combination of
different attributes. [67]

2.2.2.2 Cross-Origin Resource Sharing (CORS)

The CORS standard defines a set of HTTP headers that can be sent by the server
to allow cross-origin requests. Through the Access-Control-Allow-Origin header a
server can define which origins can access certain resources. The default, which is
achieved by not setting the header, is that only requests coming from their own origin
will be accepted (based on the same-origin policy of the browsers). This means that in
general the implementation of CORS should only be considered if it is necessary. To
improve the security, Mozilla [68] proposes that "they should be locked down to as few
origins and resources as is needed for proper function".

2.2.3 Cross-Site Request Forgery
In order to protect a web page against Cross-Site Request Forgery (CSRF or XSRF)
various approaches are recommended in [68]–[71].
The first approach makes use of certain HTTP headers to determine the source of the
request. This can be done via the Referer or the Origin header, which both contain
the URL where the request is coming from. While the former header can contain
the complete URL, depending on the privacy settings on the webpage the request
is originated from (see subsubsection 2.3.2.3), the latter will only contain scheme,
hostname, and port. If these headers are contained within the request, a developer can
validate the request’s source and handle it if the source is valid. If these headers are not
contained, blocking is recommended by OWASP. However, this has the downside of
blocking 1-2% of traffic as described in [69] and also disallowing users from accessing
the page if they make a request from a website with a restricted Referer header.
Furthermore, forcing the user to interact with the website before making a request

19



2 Fundamentals

can be used to mitigate CSRF attacks [69], [70]. The website can for example force
re-authentication or solving a CAPTCHA. If this is done, requests which are forged
by attackers are not accepted, because no user interaction is included. It should be
mentioned that this approach influences the usability of the website by interrupting the
user. Therefore, it is recommended to use this only for critical functions.
As written by Mozilla [68]: "the most common and transparent method of CSRF
mitigation is through the use of anti-CSRF tokens" which is the third approach. It
offers different types of implementation which are the Synchronizer Token Pattern,
the Encryption Based Token Pattern, the HMAC Based Token Pattern and the Double
Submit Cookie method [69]. The first pattern, the Synchronizer Token Pattern, stores
tokens similar to session IDs. These tokens should be unpredictable and therefore
creating them with a secure method is recommended. This token is added to a cookie,
read on the client-side, and added to the HTTP headers of further requests or a hidden
field of a form. On the server, the sent token is then validated and the request is
permitted if the tokens within the header and the storage of the server match. The
Encryption Based Token Pattern, on the other hand, uses encryption. A unique key is
used to generate a token with the user’s session ID and also a timestamp. This token
is passed back to the server in the same manner as before, and then it is validated
by decrypting it with the same key. Hence, no storage of the token is needed but the
secret key needs to be managed. Furthermore, the HMAC Based Token Pattern can
be chosen. This pattern uses HMAC with hashing algorithms like SHA-256 to encrypt
data. Firstly, a token is created by inserting the session ID and the current timestamp
into the HMAC. A secret key is used to create the hash. The client then includes this
token, as well as the request’s time, in the request via the above-mentioned methods.
To validate these tokens, the timestamp from the token of the request, as well as the
session ID, are used to re-generate the token. If the token matches and the timestamp,
that is sent with the request does not exceed the time of expiration, the request is
permitted. Finally, if no state is to be stored on the server, the Double Submit Cookie
method can be used. Which, instead of sending one cookie, sends two cookies one
containing session information and the other containing the CSRF token. The client
then also adds the CSRF token to a hidden field or header and sends this data to the
server. The server then checks if the value from the header and the cookie match,
without saving the token in a database.
Finally, the web application should make use of different cookie attributes to enhance
its security. First, setting the cookie to Secure prevents sending cookies in non HTTPS
requests. Furthermore, the SameSite attribute helps to enhance security. This attribute
determines whether the cookie of a website should be sent to in all contexts (none), only
within a first-party context (strict), or only when doing top-level navigation with secure
HTTP methods (lax). This feature is enabled in most major browsers, except Internet

20



2 Fundamentals

Explorer, and also defaults to lax in Chrome, Edge, and Opera. If this attribute is
set to strict, for example changing from the URL subdomain1.myApp.com to the URL
subdomain1.myApp.com will result in no cookies being sent with the request. If lax is
chosen on the other hand, the cookies will be send with the request if the request is a
safe HTTP method such as GET, HEAD, OPTIONS or TRACE. However, different methods
of exploitation exist if lax is used. First, an attacker can open new windows (iframe)
or use the top-level navigation to send the cookies with the request. Secondly, if the
web application uses prerendering, this can be used to create requests that will count
as same-site and therefore contain the cookie. In conclusion, these attributes help to
make cookies more robust, but should not be used as the sole protection method. The
implementation of the above-mentioned tokens is highly recommended.
Furthermore, it should be mentioned that all of the security mechanisms above can
be bypassed, if an attacker can successfully apply an XSS attack. Since most of the
patterns described above read data from the cookies, a successful XSS attack could do
the same. Consequently, attackers could forge requests containing the cookie’s data
and therefore execute CSRF attacks.

2.3 Configuration-based Vulnerabilities
The third group of vulnerabilities covers vulnerabilities concerned with the configura-
tion of web applications. This includes Sensitive Data Exposure, Security Misconfigu-
ration, Using Components with Known Vulnerabilities and Insufficient Logging and
Monitoring.

2.3.1 Sensitive Data Exposure
This subsection will cover the protection of sensitive information. This includes protect-
ing data and also the management of cryptographic keys.

2.3.1.1 Protection of Data

Data that is transported between, for example, the client and the server needs to
be secured to make it confidential. If this is not the case, man in the middle at-
tacks can lead to the leakage of data. Therefore, as proposed in [12], the header
Strict-Transport-Security should be used to enforce communication over HTTPS
(see subsubsection 2.3.2.3 for more information).
Once the data is at rest, sensitive or personal data should be encrypted or in certain
cases also has to be encrypted depending on the applicable data regulation such as
the General Data Protection Regulation. According to the OWASP Foundation [72],

21



2 Fundamentals

the algorithm AES with a key length of 128 bits, or if the system allows it 256 bits,
should be used for symmetric encryption. The difference in the cipher key length
defines the number of cycles that are done by the algorithm, resulting in more security
if 256 bits is chosen over 128 bits [73]. The block size of AES is however always 128
bits [73]. In addition, the choice of a secure cipher mode, which determines how the
blocks of a block cipher are put together, is also emphasized to be important by [72].
The recommended cipher modes, by [72] and [74], are GCM and CCM since these are
authenticated modes. Also, an initialization vector is needed depending on the cipher
mode. This is randomly generated data that is created for every en- and decryption
process [75]. It ensures that, two equal inputs will not generate the same output. Its
length should be the same as the block length of the cipher (for AES 128 bits) since it is,
again depending on the chosen cipher mode, added during the en- or decryption using
an XOR operation. Finally, when using asymmetric encryption, the OWASP Foundation
[72] recommends the usage of Curve25519 or RSA with a key length of 2048 bits.

2.3.1.2 Key Management

Different keys exist within a web application. These keys can either be secret keys,
used for symmetric encryption or HMAC, or public and private key pairs that are
used for asymmetric cryptography [76]. They have to be generated, distributed, stored
and rotated [72]. When generating a key, the key strength depends on the used
cryptographic algorithm. See [77] for guidance on how to select a secure key for a
specific algorithm. The distribution should only be done through secure channels
[72]. Once generated, the key should be stored securely. The OWASP Foundation [72]
recommends storing a key inside of a physical or virtual Security Module or in key
vaults (for example Azure Key Vault). In case a key leaked, reached its cryptoperiod
(see [77]) or was used to encrypt a certain amount of data (depending on the length of
the key) it has to be rotated [72]. Old keys should be encrypted with newer ones and
stored in order to access data that was encrypted by the old key.

2.3.2 Security Misconfiguration
In the following fundamentals that are concerned with the vulnerability Security
Misconfiguration will be disclosed.

2.3.2.1 Security Hardening

Mourad, Laverdiere, and Debbabi [78] define security hardening as: "any process,
methodology, product or combination thereof that is used to add security functionali-
ties and/or remove vulnerabilities or prevent their exploitation in existing software".

22



2 Fundamentals

Therefore, a broad spectrum of tasks is included in the activity of security hardening.
The OWASP Foundation [12] describes certain tasks such as the build process, the test-
ing for unnecessary features, the patching of necessary features, and the segmentation
between separate components. The build process should be automated in order to
enable repeatable secure deploys of an application throughout the software develop-
ment lifecycle [57]. This includes the creation of configurations that are recommended
for the technology that is used, the setting of flags to prevent buffer overflows, and
having administrators that guarantee the integrity of said configurations. Furthermore,
all components should be up to date, unnecessary components should be removed
and necessary elements should come from a trusted source and should be inventoried.
Lastly, error messages should not lead to the exposure of security issues, the debug
mode should be disabled and the setting of secure HTTP headers should be considered.

2.3.2.2 Error Handling

An error is caused by a fault and leads to the failure of the system if the error has an
influence on the service or reaches its surface [79]. Therefore, the system needs error
handling, which tries to remove errors from the current state of the system [79]. If no
error handling is done, the failures of the system can give attackers information about
the underlying code. If for example stack traces are displayed, an attacker receives
not only the information on why this error happened but also where in the system.
To mitigate this problem, the OWASP Foundation [80] proposes to use a global error
handler that catches every error that happened unexpectedly. Furthermore, Hsieh, Le
My, Ho, et al. [81] propose different code smells in JavaScript error handling, which are
also applicable for Java, that should be addressed. First of all, ignoring the exception by
leaving the catch block empty should be refactored to make the system error reporting.
Secondly, the errors of asynchronous callbacks should be handled within these callbacks
and global error handlers should be used for the reasons described above. Thirdly,
error objects should be thrown, containing more information, rather than only string,
containing the error message. Finally, exception handlers should not only log the
information but also introduce fallback mechanisms.

2.3.2.3 HTTP Header

The headers that HTTP provides have an impact on the security of the system. The
headers described in the following are based on the OWASP Secure Headers Project
[82], the first round of expert interviews and sources found in the literature [83]–[86].

First, the HTTP Strict Transport Security (HSTS) header, which forces the browser
to use encrypted HTTPS for further requests, is considered. In case a user tries to access

23



2 Fundamentals

the web application via HTTP, the browser will change this request to use HTTPS. An
attacker cannot then downgrade the HTTP connection, and therefore data in transmit
stays encrypted and cannot be accessed through man in the middle attacks. In order
to configure it securely, the directive max-age should be set to an adequately high
value (63072000 is recommended and 15768000 seen as minimum by Mozilla [68])
and includeSubDomains should be enabled to also enforce HTTPS on subdomains.
Furthermore, the preload directive exists. This is executed based on a service of Google
that maintains a list of websites for that HSTS should be preloaded. If this directive
is set, the browser will check the website against a hardcoded list (which can differ
depending on the browser) and hence will not use HTTP as an initial request if the
website is contained in the list. In addition, as described in [87], setting the preload
directive will be treated as a request to be included in the preload list. For further
requirements to be accepted into the list, please refer to the source.
Second, the X-Frame-Options will be evaluated which is used to protect the web appli-
cation from clickjacking by restricting the page from rendering in <frame>, <iframe>,
<embed> or <object> elements. Rendering can either be completely denied, only
accepted from the same origin, or a specific domain. However, because of the Content-
Security-Policy (CSP), which will be covered later, and its frame-ancestors direc-
tive, this header is becoming obsolete. If both headers use their implementation,
X-Frame-Options will be overwritten by the CSP. Nevertheless, the usage of this header
is important because certain browsers such as Internet Explorer 11 do not yet support
the CSP’s frame-ancestor directive. The values sameorigin or deny are recommended
as defenses against clickjacking.
Third, the CSP, which helps to protect the website against XSS or data injection attacks
will be elaborated. This header proposes different directives, which all define a policy
for a certain type of resource. For example, script-src ’self’ defines that only
the same origin is a valid source for JavaScript code. In specific cases, this CSP can
disallow certain functionalities of web frameworks and thus is recommended to be
set at the start of development. As stated by Expert 2, when implementing the CSP
the developer should choose a whitelist approach. Therefore, setting default-src
’none’ to generally disallow any resources and adding more policies during the de-
velopment to make exceptions as needed is recommended by [68]. In addition, the
require-trusted-types-for directive is also recommended. It tells browsers to moni-
tor the data that is passed to functions such as innerHTML. Hence, a type error is thrown
if no trusted type, but for example, a string is passed to such functions. By using the
createPolicy of trustedTypes a new type with for example input sanitization using
DOMPurify can be defined (see [88] for a full example). Furthermore, external sources
can be used to validate the CSP. For example, the CSP Evaluator [89] can be used to
check the configuration and receive support on how to configure it securely.

24



2 Fundamentals

Fourth, is the Referrer-Policy header which is concerned with the information that
is sent with the Referer (misspelling of the word ’referrer’) header. Depending on
the amount of privacy that is wanted for the Referer header, the following directives
should be considered based on [68] (see [90] for the full list): no-referrer for no
information, same-origin for referrer information only in requests to the same origin,
strict-origin for only the URL without path (for example https://myApp.com/)
or strict-origin-when-cross-origin for sending the full referrer within the same
origin but only the URL without path to different origins. As stated by Dolnák [86], it is
recommended to choose either strict-origin or strict-origin-when-cross-origin.
Fifth, a header that is supposed to help to deal with XSS attacks called X-XSS-Protection
is examined. This header tells browsers to stop loading if an XSS attack is recognized.
However, this feature was either removed (Chrome and Edge) or not implemented
in the first place (Firefox) because as stated in [91]: "The XSS Auditor can introduce
cross-site information leaks and mechanisms to bypass the Auditor are widely known".
Consequently, setting this value to 0 ([68] does recommend setting it to 1 because
the guidelines were created before the feature was removed by major browsers) is
recommended, so that older browser versions do not introduce the issues described
above. Furthermore, similarly to the X-Frame-Options header, the CSP can be used as
an alternative since it can disable inline JavaScript.
The final group of headers is concerned with caching, which was mentioned to be
important by Expert 2 and 3. All of the following headers will be used to reduce to
possibility of information leakage through cached information. For Cache-Control
enabling the directives no-cache, no-store and must-revalidate in order to validate
caches with the server before using them in case caches are present, not storing caches
at all, and validating caches if the resource is stale is recommended. In addition,
max-age=0 can be used to force caches to revalidate themselves after zero seconds.
The next header is Expires which implements the same functionality as the max-age
directive but takes an expiration date instead of seconds. Since the former is taking
priority over the latter [92], setting max-age is sufficient. The last header is the Pragma
header, which used for HTTP/1.0 in which Cache-Control is not available. Its no-cache
directive should be set.
Further headers, that exceed the scope of the thesis, that can also be used to enhance the
security of a web application, are for example: X-Permitted-Cross-Domain-Policies,
X-Content-Type-Options, Clear-Site-Data and Permission-Policy.

2.3.3 Using Components With Known Vulnerabilities
The usage of components that have known vulnerabilities can lead to the system
being attacked using these vulnerabilities. Therefore, scanners exist, which compare

25



2 Fundamentals

an application’s dependencies to a database of vulnerabilities. First of all, it is to be
emphasized that the quality of these scanners depends heavily on the database they
use. If the database is not updated once a vulnerability is found, scanners cannot detect
them.
The most commonly used database for vulnerabilities of software is the Common
Vulnerabilities and Exposures (CVE) list. As mentioned on their website their goal is
to [93]: "identify, define, and catalog publicly disclosed cybersecurity vulnerabilities".
The database contains over 150.000 records that are provided with a unique identifier
(for example CVE-2021-1234) containing the characters ’CVE’, the year in which the
vulnerability was issued, and a sequence number containing four or more digits. In
addition, these records also contain a description of the issue and references. Each
record deals with a specific instance of a product or system and the issues leading
to a vulnerability. The focus of this database is, as mentioned above, only to catalog
these vulnerabilities. Further evaluation is done through the National Vulnerability
Database (NVD) which is built upon CVE’s database. The data coming from CVE is
evaluated by NVD based on the existing information regarding the vulnerability and
the Common Vulnerability Scoring System (CVSS) v3.1 and v2.0. The result is a CVE
record enhanced with a severity score and further information.

2.3.4 Insufficient Logging And Monitoring
A file that stores data about the events that take place within a system is called a log.
Logs consist of entries. An entry displays all relevant information for one certain event
that occurred in the system. Nowadays, logs are used to track the user’s activity or to
recognize attacks. Different sources can create logs, such as routers, firewalls, databases,
or applications. [94]
Kent and Souppaya [94] propose different types of information which should be logged
within applications. First of all, the requests and responses sent between client and
server. As stated by the authors, the information can be used to understand the ac-
tions and their sequence done by an authenticated user. Furthermore, information
regarding user accounts is declared to be important. This includes authentication
processes, regardless of failure or success, the usage of certain privileges, or changes
within the account. This information can help to prevent automated attacks against
the authentication of an application. Next is the information about the usage of the
application. The authors include data such as the number of transactions that are done
in a certain amount of time and also their size. Finally, actions with a significant impact
on operation should be logged. These are starting or shutting down the application,
crashes, or changes within its configuration. In addition, further events are defined
by the OWASP Foundation [95]. Those are errors in the validation of input or output,

26



2 Fundamentals

authorization errors, failures within session management, errors of the application such
as runtime errors, or the usage of functions with a higher level of risk such as access to
administrative functions. Further literature supports the findings described above [96],
[97].
Furthermore, the data that is included in an entry is discussed. The OWASP Foundation
[95] proposes that the data contained within one entry should answer the questions
when, where, who, and what. However, Marty [97] further adds the why question and
Chuvakin and Peterson [96] goes even further by adding a how question. To answer
the when question all authors agree on recommending a timestamp with the time zone.
The where question defines in which part or component of the application the log
originates from. Especially for a web application, this can include URL entry points and
the used HTTP method [95]. In the who questions the statements of the authors do not
align since Chuvakin and Peterson [96] proposes the usage of session identifiers which
is emphasized not to be used by the OWASP Foundation [95]. A user identifier should
be chosen like the username or other distinctive attributes. The what is also defined
differently by the authors. Chavan and Meshram [98] define it as the object, meaning
for example the resource, that is causing the log, while the others define its type of
event with a given severity (defined as an additional priority attribute by [98]) such
as ’warn’, ’error’, ’crit’ or similar. Both Chuvakin and Peterson [96] and [97] answer
the why question by simply giving a reason why this log was created. The OWASP
Foundation [95] proposes this in a list of additional data that could be considered.
Finally, the how question is answered with the action [98], such as the reason for this
request, which is also included in the list of additional data in [95].
More important aspects of logging are the following: no sensitive data such as pass-
words or source code should be logged [95], [96], a logging syntax should be defined
to have standardized logs [97], the logs should be protected when they are at rest or
in transit [94], [95] and the logs should be monitored in order to respond to certain
incidents.
Kent and Souppaya [94] present guidelines on how logs should be analyzed. At the
start, an understanding of the logs should be established. The author suggests do-
ing regular reviews of logs to gather a better understanding which can then lead to
automation of the analyzing process. Next, the logs should be prioritized based on
characteristics such as the entry type, the source of the log, or the frequency of the
entry. Finally, log entries that are of interest should be responded to by initiating a
corresponding process in the organization.

27



2 Fundamentals

2.4 Automated Tools and Processes
This section deals with the fundamentals of automated tools and processes that are
used to enhance the security of web applications.

2.4.1 Automated Tools
Many tools exist to test the security of a system. A survey that was conducted by
Felderer, Büchler, Johns, et al. [10] breaks these tools down into multiple categories
which are model-based testing, code-based testing and static analysis, penetration
testing and dynamic analysis, and regression testing. In order to not exceed the scope
of this thesis, the focus is put on static and dynamic analysis and in particular, tools
that can execute these tasks in an automated manner. A third category of tools, so
called Interactive Application Security Testing [99] tools, which combine SAST and
DAST approaches are not considered in the thesis.

The static analysis of code describes the process of source code evaluation without
executing it, and therefore a white-box testing technique [10], to search for mistakes.
Such mistakes can include unreachable code and undeclared variables but also potential
vulnerabilities leaving the system open to attacks through for example injection or XSS.
These errors are found through the search of predefined patterns that could lead to the
said errors. [100]
When the analyzers described above are used to find vulnerabilities and evaluate the
security of an application, it is called Static Application Security Testing (SAST) [101].
These tools are often used early, during the development of software [11], [101] and
hence can help to find security issues at the start of the software development lifecycle
[10]. After comparing the incoming source or byte code against a predefined set of
rules [100], the result of such an analysis with a SAST tool is a list of code blocks that
could lead to possible vulnerabilities [10]. This list can include false positives or false
warnings, which are pieces of code that were classified as vulnerabilities from the SAST
tools but cannot be attacked [100]. Finally, since the set of rules determines the results,
missing rules can therefore lead to false negatives [10]. A generally positive attitude
towards SAST tools from developers is discernible in the literature [17].

Dynamic analysis, on the other hand, requires the application to be running and
does not access the source code. Thus, it is a black-box testing technique [10]. Through
the usage of for example HTTP requests, so-called Dynamic Application Security Test-
ing (DAST) tools try to find vulnerabilities within a web application [102]. These tools
contain vulnerability scanners [103], that send predefined payloads to the interfaces of

28



2 Fundamentals

the system, dynamic taint analyzers, which search for insecure handling of data, and
fuzzing tools, that input random data into the system [10]. Since these tools are used to
verify the absence of vulnerabilities they are commonly used after the development of a
system [11], [102]. The testing is done directly on a running instance of the application
and therefore successful exploitations are directly viewable resulting in a low amount
of false positives.

2.4.2 Processes
In order to reduce possible vulnerabilities in web applications even further, various
guidelines for secure software development exist. The Security Development Lifecycle
(SDL) [11], the Building Security in Maturity Model (BSIMM) [104], and the OWASP
Software Assurance Maturity Model (SAMM) [105] can be chosen as guidelines. All
of these guidelines include training in security, the establishment of security require-
ments, the clarification of possible threats, verification through security testing and
code reviews or penetration testing, and also the management of secure deployment.
Developers should consider introducing one of these guidelines in their software
development lifecycle.

29



3 Related Work

Web Application Vulnerabilities: Various sources set out web application vulnerabili-
ties and how to deal with them [2], [12], [13], [18], [98], [106], [107]. Their proposed
countermeasures do however often not include specific guidance for the secure imple-
mentation of these countermeasures. Thus, software engineers or architects do not have
concrete guidance regarding the used frameworks and libraries that is proposed within
this thesis.

Web Framework Evaluation: An evaluation of web framework-native functionali-
ties for the prevention of XSS attacks was proposed by Weinberger, Saxena, Akhawe,
et al. [5], [108]. They analyzed frameworks based on their built-in XSS sanitization
functionality. The results showed that during that time, only half of the reviewed frame-
works even implemented an automatic sanitization progress. Moreover, the very recent
paper from Peguero [109] evaluates the security of client- and server-side JavaScript
frameworks. However, only the XSS and CSRF vulnerabilities were considered again.
Their research does not, or only partially, include the frameworks covered in this thesis.
In addition, they only gathered different web applications and tested how many of them
use common solutions for these vulnerabilities. Thus, no evaluation of the solutions
themselves was conducted. Finally, further literature regarding the comparison of
web frameworks exists but is only concerned with the performance and quality of
web frameworks [110]–[112]. Only Delcev and Draskovic [112] considered security
but only to a low extent and again only evaluating aspects that are related to the XSS
vulnerability and for none of the frameworks evaluated in this thesis.

Library Evaluation: Different literature can be found that deals with characteristics
of libraries [8], [9], [15], [16]. Since Larios Vargas, Aniche, Treude, et al. [8] mostly
include the other sources, it can be seen as the most comprehensive source. Through
the execution of both expert interviews and a survey, the characteristics they propose
can be seen as highly validated. However, the security of a library is only covered
shallowly and therefore further security-related characteristics are proposed in this
thesis.

30



4 Methodology

This chapter will disclose the methods used to answer the research questions within
this thesis. To achieve this, the following sections will cover the different methods used
to collect information.

4.1 Literature
To support the solutions, that are to be defined, with theory, literature was researched.
This research includes literature from sources such as Google Scholar, IEEE Explore,
and Springer. Also, the inclusion of blogs, framework and library documentations,
and other grey literature was necessary to receive a greater understanding of the
solutions frameworks and libraries provide and to gather security issues connected
to these solutions. Therefore, also the general Google search engine was added to
search for grey literature. Furthermore, publications of the OWASP Foundation as
well as NIST were used as knowledge sources because of their concrete and pragmatic
security-related guidance. The guidelines of Garousi, Felderer, and Mäntylä [113] were
used to conduct the research.
The keywords used as search strings varied depending on the context. For the research
of vulnerabilities the keywords "Web Application" and "Vulnerability" were used
in combination with one of the following keywords: "Assessment", "Classification",
"List" or "Statistic". The keywords "Software Library" in combination with "Metric" or
"Selection" were used to gather information about relevant library characteristics. To
find solutions for a given vulnerability, the vulnerability was searched together with
the keywords "Detection", "Prevention", "Attacks", and the names of the frameworks.
For the evaluation of SAST tools, the keyword "SAST" was for example searched in
combination with "Evaluation".

4.2 Evaluation
The solutions that are provided by libraries and frameworks were evaluated based on
the information that was found within the literature (see chapter 2) and provided by
the experts (see the corresponding sections in chapter 6). An overview of the evaluated

31



4 Methodology

frameworks and also the libraries, that were covered more in detail can be found
in Appendix A. Furthermore, to develop a greater understanding of the proposed
solutions, code examples were created. These code examples are used to test certain
functionalities like for example escaping mechanisms, error handling, logging, and
more. They offer a simple example of the functionality that is to be tested. Where
these examples contain relevant information about the functionality within chapter 6,
this is mentioned within the evaluation. They can be found under the following URL
https://github.com/moritzhuether/mastersthesis.
Moreover, a similar approach was chosen to evaluate the tools. Literature was re-
searched and the tools were also tested with the above-mentioned code examples. This
means that examples, in which vulnerabilities were intentionally placed, were used to
evaluate whether the tools find these vulnerabilities or not. In both evaluated tools,
Sonarqube and LGTM, the built-in constraints were evaluated.

4.3 Expert Interviews
To support the findings of the literature, data was collected through semi-structured
expert interviews. These interviews were planned, conducted, and evaluated according
to Gläser and Laudel [114]. The interviews were divided into two groups. The first
group was concerned with research questions 0.1, 1, 2, and 2.1. The questions of the
second group were focused on research question 3.
For the questionnaires please see Appendix B. The demographic questionnaire was
used in both rounds of interviews.

4.3.1 First Interview Group
The first questionnaire was planned using the concurrent embedded research design
defined by Creswell and Creswell [115]. Therefore, not only qualitative data was
gathered, but also quantitative while having a higher focus on the qualitative questions.
The quantitative questions acted as filter questions, which were asked at the beginning
of each subject. The experts had to choose on a Likert scale, going from one to five,
how familiar they are with firstly the vulnerabilities that exist for web applications
and secondly with the OWASP top 10 web application security risks [12] in detail.
This was done to evaluate the quality of the results from a specific expert, in order
to prioritize answers of experts with higher stated knowledge in case of conflicting
answers. However, throughout the interviews, the pattern was recognized that experts,
who gave answers of higher quality, tended to also declare their knowledge in a
specific vulnerability to be lower than experts that gave answers of lower quality. In

32

https://github.com/moritzhuether/mastersthesis


4 Methodology

addition, conflicting answers could only be recorded for a few answers, therefore this
measurement was omitted for the detailed questions about the OWASP top ten [12].
The interviews were conducted to gather currently relevant vulnerabilities, important
characteristics of libraries, and solutions, consisting of framework-native or library-
provided functionalities, to deal with the vulnerabilities proposed by OWASP [12]. To
reduce the time frame of the interviews, the detailed questions about vulnerabilities
were limited to the OWASP list [12].
The selected interviewees were all employees within msg systems AG. Employees that
have points of contact with security were considered for the interview. Since rather
specific knowledge was asked within the questionnaire, the contacted individuals
received the three main questions that were to be asked during the interview beforehand.
Only employees that stated that they could answer these questions were questioned. In
total four experts were interviewed, two working as security advisors and penetration
testers, and two working as developers and architects. For further information regarding
the experts, please refer to Table 4.1. The interview time was initially set to 60 minutes.
However, this was not sufficient, since the first interview was not finished. Therefore, the
next interviews were scheduled for 90 minutes. One expert (Expert 1) did unfortunately
not respond to further requests to finish the interview. Consequently, only the questions
until the Cross-Site Scripting vulnerability were taken into consideration.

4.3.2 Second Interview Group
This group was not conducted using a mixed-method but by doing only qualitative
research for the reasons described above. Therefore, no additional quantitative questions
were asked. The main goal of this round of interviews was to generate knowledge
about tools or processes that are used in the software development lifecycle. Thus,
experts were questioned that experienced the usage of such tools or processes when
working in a software project. The questionnaire was divided into two thematic blocks.
The first block covered the tools with questions about what tools are used, where they
are located (for example in Git), who maintains them, and what problems they solve.
The second block, on the other hand, focused on different activities that are done to
enhance security during the development. Again, questions regarding the processes in
general, when they are executed, and who is responsible for them, and what they solve
were asked.
Again, employees of the msg systems AG were questioned. In contrast to the first
group, the experts were selected after they stated that they have worked in projects in
which said tools or processes were applied. Therefore, direct knowledge in the area of
security was not necessarily required. Detailed information about the experts can be
found in Table 4.1. The experts of the second interview round are marked accordingly.

33



4 Methodology

Expert #
Interview
Round

Profession
Years of
experience

Points of contact
with security

Expert 1 1 Lead IT Consultant Senior IT Consultant Penetration Tester

Expert 2 1/2 IT Consultant
2 Penetration Testing/
5 Software Engineering

Penetration Tester

Expert 3 1 Lead IT Architect 16 Architect Development of Web Apps

Expert 4 1/2 Lead IT Consultant
5 Architecture/
20 Software Engineering

Development of Web Apps

Expert 5 2 Senior IT Consultant 8 Architecture/Planning Planning of Security
Expert 6 2 Senior IT Consultant 5 Architecture General Development
Expert 7 2 Principal IT Consultant 7 IT Consultant Application Security

Expert 8 2 Lead IT Consultant 25 Software Development
Front-End Development/
Privacy Committee

Table 4.1: Demographics of the Interviewed Experts

The time frame for this interview group was set to 30 minutes since fewer areas were
covered by the second questionnaire than in the first questionnaire.

4.4 Data Collection
In order to compare libraries with similar functionalities, data about them was collected.
This section will therefore deal with the different approaches that were elaborated to
generate a metric to compare similar libraries. The following will first evaluate the
results of the expert interviews, and further name the defined characteristics and how
they are gathered and used in the thesis.

4.4.1 Expert Interviews
To find out which criteria influence the process of selecting libraries, the interviewed
experts were asked multiple questions.
In the first question, Expert 1 to 4 stated that popularity is important to them. However,
Expert 2 and 3 also stated that popularity is not the most important criterion for them.
A further important criterion, that was mentioned by the experts, is how vulnerabilities
or issues are handled by the maintainers. This includes the reactions to issues and
the time till they are resolved (Expert 4), current vulnerabilities and how the library
maintainers handle them (Expert 2), and the general history of issues (Expert 1). The
last release and the update rate of the library are valued highly by Expert 4. In addition,
Expert 2 is interested in the initial release of the library. Both Expert 1 and 2 favor
libraries that are open source so that source code reviews can be conducted. Expert 3

34



4 Methodology

states that the main criterion is that the library needs to fit the purpose. To validate the
security of the library the experts proposed different options. First, Expert 1, 2, and 3
communicated that they would review the source code of a library if this is necessary.
As Expert 4 stated, this process is often skipped to be more cost-efficient at the start of
the project. Furthermore, if the library is more popular, Experts 1 and 2 both hope that
someone else already checked the security of the library. On the other hand, Expert 4
only relies on a penetration test of a proof of concept of applications to validate their
security.
In the second question, the proposed security criteria were to be validated. The first
security criteria, ’Security by Default’, was emphasized to be a good indicator by all
experts. In contrast, ’Customizability’ did mostly receive criticism. Experts 1 to 3
stated that the customizability of a security-related library can also open up room
for failure by misconfiguration. Therefore, as stated by Expert 1, the library should
rather be safe by default than offering a high level of customizability. ’Communication’
was also assessed to be a good criterion. ’State of the Art’ was however again treated
more carefully. Expert 2 said that the newer approaches do not generally offer a better
solution and that rather "battle-proven" solutions should be chosen. Expert 4 supports
this statement by mentioning that already existing solutions should be chosen.

4.4.2 Library Characteristics
In this subsection, characteristics are defined and approaches to gather them will be
evaluated.

4.4.2.1 General Characteristics

In order to evaluate a library further, literature was researched [8], [9], [15], [16] and
experts were questioned as seen above. A mapping was created to gather the most
important characteristics. The ones that were stated the most and which properties of
them are important can be seen in Table 4.2. During the research, different approaches
were pursued to generate a metric to evaluate libraries with these characteristics. These
approaches can be seen in the following discussion.

Existing Solutions

Existing solutions were researched that evaluate the characteristics of a library to receive
a comparable score. Possible candidates were either npmjs’ library evaluation or the
evaluation of npms.io. The built-in evaluation of npmjs was originally based on npms.io
(as is still written in the npmjs documentation) but as stated in [116] npmjs no longer
makes use of npms.io. The scoring is divided into popularity, quality, and maintenance,

35



4 Methodology

Popularity
Downloads
Stars
Used by other Projects

Active Maintenance

Issue Response Rate
Issue Response Time
Issue Closing Time
Issue Coverage
Last Update
Contributor
Recent Commit

Maturity and Stability
First Release
Release Frequency
Issues per Release

Community Activeness
StackOverflow Questions
Google Trends

Table 4.2: Library Characteristics

but the concrete implementation of the calculations and the used data could not be
found. Furthermore, during testing, it was noticed that npmjs scores the maintenance
of almost every library found at a value of 33%. Accordingly, this measurement was
not used. npms.io, on the other hand, is an open source project whose source code is
available. It produces scores regarding the popularity, maintenance, and quality of a
library. A total score calculated out of the mean of the three scores is also available.
The popularity evaluation contains stars, forks, downloads, contributors, dependents,
subscribers, and the download acceleration. For the maintenance, the coverage of
issues, the closing time of issues, the recent commit, and the commit frequency are
considered. These values do already cover most of the characteristics defined in
Table 4.2. Nevertheless, the quality score is also available and considers the availability
of a README, a stable version, outdated dependencies, badges, and more. The Github
project behind npm.io, called npms-analyzer, starts with gathering data through the
usage of so-called Observers. They add new libraries to the database and update older
ones with more recent data. Using this data the scoring process is started. Within its
aggregation state, the minimum, maximum, and mean values are calculated for all
libraries that are in the database. Using this aggregation, a Bezier Curve is created
which is then used to create the scores of the libraries. Unfortunately, the library is not
free from issues. Similar to npmjs, the maintenance score does not work consistently.
The score is for the majority of libraries close to or even 100%. Furthermore, the

36



4 Methodology

popularity score is also influenced by the stars, forks, contributors, and subscribers a
library has. This can at a first glance seem like an inconsistency because, for example,
the library react with currently 10,3M weekly downloads has a popularity score of
94% while escape-html with 17M weekly downloads only has a score of 64%. However,
the reason for this is a value called communityInterest which is defined through the
attributes above. The big gap in the popularity score is explained through react having
a communityInterest value of 209.423, while escape-html’s community interest value is
only at 435. No problems could be identified with the quality score.

Prototype

In an attempt to overcome the problems described above a prototype was devel-
oped which gathers data related to the maintenance-related characteristics. Hence, a
JavaScript program was written which queries data from the APIs of npmjs, Github,
npms.io, and StackOverflow. The gathered data represents the characteristics that were
found. The results of this script can be seen in Figure 4.1.
Different problems arose with this implementation. First of all, the gathering of the
different properties of Community Activeness did not generate any useful results.
Generic names such as of the library xss led to a large number of results from Google
and StackOverflow. However, most of these results did not deal with the library but
the XSS vulnerability in general, falsifying the result. Moreover, data about the issue
response time was infeasible to gather since not only maintainers can respond to issues.
Therefore, it was not clear whether a person working on the library answered the issue
or, for example, a follow-up question was asked by another user. In addition, it was
not possible to determine the number of issues per release since the issues are not
necessarily connected to a specific release. Finally, a general problem is that one data
set of a library is hard to compare with the data set of another library. The reason for
this is because individual differences are difficult to evaluate since no holistic score is
present as seen in the existing solutions above. The source code can also be found on
Github1.

Conclusion

To define a fitting solution, some of the mentioned approaches are used together. Since
npmjs’ code base could not be located, it is not used. On the other hand, npms.io’s
scores of a library’s popularity and quality are used. The data that is considered within
these scores is sufficient based on the characteristics defined above. Additionally, since
no functioning maintenance score exists, the prototype is used to gather the missing

1https://github.com/moritzhuether/mastersthesis/tree/main/DataCollection

37

https://github.com/moritzhuether/mastersthesis/tree/main/DataCollection


4 Methodology

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.
zxcvbn 256k 2012-12-01 2018-03-17 2.96 p.Y. 41.18 p.Y. 53% 151 d.p.Iss. 28 175 94% 47%

Table 4.3: Example Table of the Library Metric

data. Different properties, like the release frequency, general release data, the handling
of issues and contributors were used.
Since Java often offers fewer libraries and also fewer interchangeable ones, these char-
acteristics will only be applied to JavaScript-based libraries. To reduce the amount of
data that is to be collected, only the most popular libraries will be evaluated further
through the metric.
The final gathering process consists of multiple steps. First of all, the user of the script
passes the library name as a first and an optional Boolean as a second parameter. Using
this library name, data is gathered from npmjs.com. Additionally to the characteristics
described above, the Github repository is received through the bugs attribute of npmjs’
data. In case the data exists (some libraries do not have a Github connected), the reposi-
tory is extracted and used for further requests that are directed to the Github API. After
the data about stars, issues and contributors was collected or if no Github information
was found, the data is requested from npms.io. Finally, if the optionally passed Boolean
parameter is true, data from StackOverflow is requested. Here, questions with accepted
answers regarding a certain library, by querying for its name, are gathered. However,
as mentioned above, this is not used further in the thesis and therefore, if no second
parameter is passed, the data will not be gathered. Figure 4.2 displays this flow as a
state diagram.
The results of this evaluation are displayed in a table. An example of such a table,
containing the data of the zxcvbn library, can be seen in Table 4.3. The displayed values,
from left to right, are the name of the library, its weekly downloads from 12th of April
to 18th of April (one specific time frame was chosen for comparability), the first and last
release date, the releases per year (’Release Frequency’), the commits per year (’Commit
Frequency’), the coverage of issues (closes issues divided by all issues), the average
closing time of the issues in days per issue, the number of contributors and dependents,
and finally, npms.io’s quality and popularity score.

4.4.2.2 Security Characteristics

Since the security of the libraries was only evaluated rather one-sidedly in the literature
[8], further security-related characteristics of libraries that implement security-related
functionalities are proposed in the thesis. These are Security by Default, Customiz-
ability, Communication, and State of the Art. The first describes that the standard
configuration of a library is already configured securely. The second describes that

38



4 Methodology

Figure 4.1: Data Collection Script - Result

a library’s functionalities offer to apply different configurations to enhance security.
Communication is related to the documentation and how it communicates the security
mechanisms or security concerns that come with this library. State of the Art means that
the library’s security mechanisms are up to date with what is proposed in the literature.
The results of the expert interviews (see subsection 4.4.1) resulted in refactoring of the
characteristics. The characteristic that received the most praise is Security by Default.
Therefore, if the libraries offer certain configuration possibilities, it will be evaluated
whether these are secure by default. This evaluation, on the other hand, depends on the
last characteristic, State of the Art. Here literature is researched to determine a secure
configuration (this can be found in chapter 2). However, Customizability received
the most criticism and is therefore omitted. Communication will be described if the
documentation is referring to security-related issues or concerns that arise when using
this library. Since these characteristics are often highly interconnected, they will not be
stated explicitly in chapter 6 but covered within the library evaluations.

39



4 Methodology

Fi
gu

re
4.

2:
D

at
a

C
ol

le
ct

io
n

Sc
ri

pt
-

St
at

e
D

ia
gr

am

40



5 Vulnerabilities

In the following, vulnerabilities that were found to be relevant and their subcategories
are elaborated. In addition, the results of the expert interviews are displayed and the
aspects of the vulnerabilities covered in this thesis are defined.

5.1 Vulnerability Mapping
Vulnerabilities were researched and evaluated to gather a list of relevant vulnerabili-
ties. This process included literature research and expert interviews as described in
chapter 4. The sources that were considered are listed in the following discussion. The
OWASP top ten list of the most critical web application security risks [12] was used
as a baseline. Moreover, OWASP’s more recent top ten list of the most critical API
security risks [117] was also taken into account. Additionally, the results found by
Al-Khurafi and Al-Ahmad [118] were used to also include the top 25 most dangerous
software weaknesses according to the Common Weakness Enumeration (CWE) [13]
and the threat classification list of the Web Application Security Consortium (WASC)
[18]. Since the version of the former list used in [118] is no longer up to date (CWE list
from 2011), these results had to be adapted to the current version (CWE list from 2020).
Moreover, the statistic from Positive Technologies [14] was also given consideration.
Finally, the vulnerabilities mentioned by Chavan and Meshram [98] and Lepofsky [106]
were also taken into account.
To evaluate important vulnerabilities, the ones found in the sources listed above were
mapped against the web application security risk list of OWASP [12]. The reasons
for this are that this list often appears in the literature [2], [118]–[120] and also the
very positive resonance of Expert 1 to 4 regarding the relevance of the list in 2021. To
generate further relevant vulnerabilities over and above the OWASP list, experts were
questioned. Additionally, vulnerabilities found in the literature, that were not already
covered by the OWASP list [12], were also considered. In order to limit the scope of
the thesis, only vulnerabilities that were found three times within the sources above
were added to the list. These vulnerabilities are Cross-Site Request Forgery, Denial of
Service, Input Validation, and Open Redirects and Forwards.

41



5 Vulnerabilities

The mapping of the vulnerabilities covered in this thesis to sources in which they
make an appearance can be seen in Table 5.1. This table displays the 14 vulnerabilities
and also which source proposed a comparable vulnerability. In case the thematic fitting
was only partial, the vulnerability was put into brackets.
Furthermore, the categories ’Not considered’ and ’Not relevant’ exist. Within the former
category, vulnerabilities are included that did not reach the threshold of three sources
mentioning them. Vulnerabilities such as ’Unrestricted Upload of File with Dangerous
Type’ or ’Abuse of Functionality’ only appeared twice and are therefore out of scope.
The latter category includes vulnerabilities that are not, or only in specific cases, ex-
ploitable within web applications. These include the usage of SOAP and vulnerabilities
which deal with the memory of a program (for example out-of-bounds write) and
are therefore mainly exploitable in programming languages such as C. However, the
web frameworks that are considered within the thesis use the programming languages
JavaScript and Java and therefore these vulnerabilities do not apply. The majority of the
vulnerabilities within this category originate from the Common Weakness Enumeration
list since this list is not specific to web applications but to software in general.

5.2 Expert Interviews
In the beginning, all experts stated that they are familiar with the vulnerabilities of web
applications. Expert 1 and 4 both replied with a 5 on the Likert scale which represents
"Very familiar", while Experts 2 and 3 answered 4, which is only "Familiar".
All of the experts stated in the first question that the OWASP list [12] is still relevant in
2021. However, Expert 2 and 4 would change the order of the vulnerabilities. Expert
2 would define two groups of vulnerabilities that are injection and configuration and
Expert 4 suggested moving authentication and authorization to the top of the list.
In question three it was asked to name the most relevant vulnerability out of the OWASP
list [12]. Expert 1 answered with Insecure Deserialization and Security Management be-
ing the most relevant, while Injection and Cross-Site Scripting are less relevant because
of the good coverage of frameworks and libraries for these vulnerabilities. Expert 3
stated that the relevance of a vulnerability depends on the use case of the applications
and that therefore certain applications do not have to consider some vulnerabilities.
Furthermore, as stated by Expert 4, XML External Entities is nowadays less relevant
than the rest of the list.
In question four, further relevant vulnerabilities were tried to be gathered. Expert 1
mentioned cache poisoning and after being questioned about vulnerabilities such as
CSRF, he declared those to not be very relevant. Moreover, Expert 2 answered with
session management, which is however already covered in Broken Authentication,

42



5 Vulnerabilities

law regulations regarding data protection and handling data in such a way that only
necessary information is saved, which are already covered by Sensitive Data Exposure.
Expert 3 did not contribute any further vulnerabilities. Vulnerabilities, mentioned
by Expert 4, were the usage of components that were maliciously altered, which is
already covered in Security Misconfiguration, the general complexity of modern web
applications, and social engineering.

The findings show that the OWASP list of the top ten most critical web application
vulnerabilities [12] is still relevant in general. However, the vulnerability XML External
Entities is considered less relevant than the rest and the order of the list is not com-
pletely clear among the experts. Furthermore, only a small amount of vulnerabilities
were mentioned additionally to the list proposed by the OWASP Foundation [12].

5.3 Scope Definition
The following paragraphs will further elaborate on the vulnerabilities and their
subtopics that will be covered within the thesis. In case no further details are given, the
vulnerability will be covered completely. Since the first ten vulnerability categories are
based on OWASP’s top ten list [12], this list is used as source throughout the paragraphs.

Systems are vulnerable to Injection if they enable an attacker to influence the ex-
ecution of commands with their input. The vulnerability considers the injection into
LDAP, XQuery, the Operating System, SQL, NoSQL, HTML, and many more [121].
Since the possibilities this vulnerability offers are immense, this thesis will solely focus
on the aspects of SQL and NoSQL injection.
Broken Authentication deals with issues concerning the authentication of users. Firstly,
proper handling of user passwords is considered. This includes implementing pass-
word policies, hashing, and storing passwords. Session management is examined in
this vulnerability. Finally, authentication mechanisms such as JSON Web Token (JWT)
and session cookies will be evaluated. The thesis will not evaluate automated attacks,
multi-factor authentication, or further authentication methods.
Websites with the Sensitive Data Exposure vulnerability, do not handle sensitive infor-
mation carefully. It generally deals with any data that could be considered sensitive.
This includes first of all to only handle data that is necessary, the encryption of this
data in transmit, the encryption of this data at rest, the management of cryptographic
keys, and cryptographic algorithms in general.
In XML External Entities attackers exploit insecurely configured XML parsers, there-
fore applications which use XML can be vulnerable. This can lead to the leakage of

43



5 Vulnerabilities

data or denial of service attacks.
Broken Access Control is concerned with the authorization of users. The subcategories
of this vulnerability are general authentication since this is the reason for most of the
named problems by the OWASP Foundation and Cross-Origin Resource Sharing.
Security Misconfiguration describes different approaches to set different configura-
tions to secure values. The thesis will deal with the handling of errors, setting of HTTP
headers as well as security hardening.
The embedding of malicious scripts into websites is called Cross-Site Scripting (XSS)
attack. An attacker can run JavaScript code within the browsers of victims in case the
web application is vulnerable. Therefore, data such as tokens or cookies can be leaked.
A website can be vulnerable to Insecure Deserialization if untrusted user input is
serialized. The vulnerability can lead to remote code execution or denial of service
attacks.
Using Components with Known Vulnerabilities is a vulnerability that is concerned
with the vulnerabilities of components used in web applications through for example
dependencies.
If a web application is doing Insufficient Logging and Monitoring, attacks cannot be
recognized through the evaluation of logs. Therefore, the creation of adequate logs and
their evaluation will be considered.
Cross-Site Request Forgery attacks can occur when authentication with cookies is
implemented insecurely. Since cookies are sent with every request to the server, an
attacker can forge a request and trick a victim on executing this request. Consequently,
the attacker controlled request is authorized through the cookies of the victim.
A Denial of Service attack happens if an attacker successfully overloads the system
so that it can no longer provide its service. The thesis will focus on application layer
denial of service attacks and their prevention.
The Input Validation vulnerability is not concerned with filtering out malicious content
from input, but with the input having the correct properties that are required by the
business logic. Validating that user input is a positive number is for example be a
requirement for the quantity of ordered items in an online shop. The thesis will look
into different input validators and evaluate common patterns in input validation.
If a website has the Open Redirects and Forwards vulnerability, an attacker can make
use of unsafe or not validated redirects of the website. URL parameters can be used to
redirect from the attacked website to another website, which is often used for phishing
attacks.

44



5 Vulnerabilities

V
ul

ne
ra

bi
lit

y
O

W
A

SP
W

eb
A

pp
.[1

2]
O

W
A

SP
A

PI
[1

17
]

C
W

E
[1

3]
W

A
SC

[1
8]

Le
po

fs
ky

[1
06

]
C

ha
va

n
[9

8]
[1

4]
PT

In
je

ct
io

n
A

1:
20

17
A

PI
8:

20
19

6,
10

,1
7

6,
12

,1
9,

23
,

28
,2

9,
30

,3
1,

36
,3

9,
46

in
je

ct
io

n
fla

w
s

C
on

te
nt

Sp
oo

fin
g,

In
je

ct
in

g
O

S
C

om
m

an
d,

SQ
L

In
je

ct
io

n
PT

29
%

Br
ok

en
A

ut
he

nt
ic

at
io

n
A

2:
20

17
(A

PI
4:

20
19

)
A

PI
2:

20
19

14
,1

8,
24

1,
(1

1)
,1

8,
(2

1)
,

37
,4

7,
49

au
th

en
ti

ca
ti

on
,

se
ss

io
n

m
an

ag
em

en
t,

ac
ce

ss
co

nt
ro

l

(B
ru

te
Fo

rc
e)

,
In

su
ffi

ci
en

t
A

ut
he

nt
ic

at
io

n,
C

re
de

nt
ia

l/
Se

ss
io

n
Pr

ot
ec

ti
on

,
In

su
ffi

ci
en

t
Se

ss
io

n
Ex

pi
ra

ti
on

,
Se

ss
io

n
Fi

xa
ti

on

PT
45

%

Se
ns

it
iv

e
D

at
a

Ex
po

su
re

A
3:

20
17

(A
PI

3:
20

19
)

7,
(2

0)
4,

13
(r

el
at

ed
se

cu
ri

ty
is

su
es

)
In

fo
rm

at
io

n
Le

ak
ag

e
PT

13
%

X
M

L
Ex

te
rn

al
En

ti
ti

es
A

4:
20

17
19

43
,4

4
PT

5%

Br
ok

en
A

cc
es

s
C

on
tr

ol
A

5:
20

17
A

PI
1:

20
19

A
PI

5:
20

19
16

,1
2,

22
,

25
2,

16
,1

7,
33

,
34

,4
8

un
au

th
or

iz
ed

vi
ew

of
da

ta
Br

ok
en

A
cc

es
s

C
on

tr
ol

,
Pa

th
Tr

av
er

sa
l

PT
37

%

Se
cu

ri
ty

M
is

co
nfi

gu
ra

ti
on

A
6:

20
17

(1
3)

14
,1

5,
(4

5)
er

ro
r

ha
nd

lin
g,

se
cu

ri
ty

m
is

co
nfi

gu
ra

ti
on

s
Im

pr
op

er
Er

ro
r

H
an

dl
in

g,
A

pp
lic

at
io

n
M

is
co

nfi
gu

ra
ti

on
,

PT
85

%

C
ro

ss
-S

it
e

Sc
ri

pt
in

g
A

7:
20

17
1

8
cr

os
s-

si
te

sc
ri

pt
in

g
C

ro
ss

-S
it

e
Sc

ri
pt

in
g

PT
53

%
In

se
cu

re
D

es
er

ia
liz

at
io

n
A

8:
20

17
21

U
si

ng
C

om
po

ne
nt

s
w

it
h

K
no

w
n

V
ul

ne
ra

bi
lit

ie
s

A
9:

20
17

(r
el

at
ed

se
cu

ri
ty

is
su

es
)

PT
13

%

In
su

ffi
ci

en
t

Lo
gg

in
g

an
d

M
on

it
or

in
g

A
10

:2
01

7
A

PI
10

:2
01

9

C
ro

ss
-S

it
e

R
eq

ue
st

Fo
rg

er
y

9
9

C
ro

ss
-S

it
e

R
eq

ue
st

Fo
rg

er
y

PT
34

%
D

en
ia

lo
f

Se
rv

ic
e

(A
PI

4:
20

19
)

23
10

de
ni

al
of

se
rv

ic
e

D
en

ia
lo

f
Se

rv
ic

e
In

pu
t

V
al

id
at

io
n

3
20

in
pu

t
va

lid
at

io
n

O
pe

n
R

ed
ir

ec
ts

an
d

Fo
rw

ar
ds

38
re

di
re

ct
s

an
d

fo
rw

ar
ds

PT
16

%
O

pe
n

R
ed

ir
ec

t

N
ot

co
ns

id
er

ed
a

A
PI

6:
20

19
A

PI
9:

20
19

11
,1

5
3,

5,
(2

2)
,2

4,
25

,2
6,

27
,

40
,4

1,
42

A
bu

se
of

Fu
nc

ti
on

al
it

y,
Bu

ff
er

O
ve

rfl
ow

PT
34

%
U

se
r

In
te

rf
ac

e
M

is
re

pr
es

en
ta

ti
on

PT
16

%
U

nr
es

tr
ic

te
d

Fi
le

U
pl

oa
d

PT
11

%
SS

R
F

N
ot

re
le

va
nt

(2
,4

,5
,8

)b
7

b
,(

32
,3

5)
c

Ta
bl

e
5.

1:
V

ul
ne

ra
bi

lit
y

M
ap

pi
ng

a D
id

no
t

ap
pe

ar
at

le
as

t
th

re
e

ti
m

es
w

it
hi

n
th

e
so

ur
ce

s
an

d
is

th
er

ef
or

e
to

sp
ec

ifi
c

an
d

ou
t

of
sc

op
e

fo
r

th
is

th
es

is
b N

ot
ap

pl
ic

ab
le

fo
r

Ja
va

or
Ja

va
Sc

ri
pt

c SO
A

P
is

no
w

ad
ay

s
on

ly
us

ed
ra

re
ly

in
w

eb
ap

pl
ic

at
io

ns

45



6 Mapping of Vulnerabilities to Solutions

In this chapter, different solutions consisting of framework-native functionalities and
libraries are evaluated. The chapter is again structured according to the vulnerability
groups and deals first with the results of the expert interviews. Further, it covers the
solutions native to frameworks and the ones of libraries separately for every subtopic in
the corresponding vulnerability. The results of the expert interviews are only available
for the vulnerabilities taken from the OWASP top ten list [12]. Furthermore, whenever a
library is mentioned its name ist be written in italic. In the case of a library for Node.js,
the name of npmjs.com is used and for Java, the name found on mvnrepository.com is
used.

6.1 Input-based Vulnerabilities
This section sets out solutions for the input-based vulnerabilities.

6.1.1 Injection
In this section, solutions of frameworks and libraries for the protection from injection
attacks on different database management systems (DBMS) are disclosed. To cover
the most common use cases, two of the most popular SQL and NoSQL DBMSs were
chosen. Based on the statistics of [122], [123], these DBMSs are MySQL and MongoDB.
MySQL is a relational DBMS that was released in 1995. MongoDB is a NoSQL database
management program that uses document store. Its initial release was in 2009.
Since the database is in most cases connected to the server, only the server-side
frameworks are considered. Example implementations were created that show the
query possibilities for Express1 and Spring Boot2.

1https://github.com/moritzhuether/mastersthesis/tree/main/Express/01-Injection
2https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/
java/main/demo/Injection.java

46

npmjs.com
mvnrepository.com
https://github.com/moritzhuether/mastersthesis/tree/main/Express/01-Injection
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/Injection.java
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/Injection.java


6 Mapping of Vulnerabilities to Solutions

6.1.1.1 Expert Interviews

Within the first group of interviews, multiple questions concerning the SQL and NoSQL
injection vulnerability were asked.
The first question did not result in a clear result, since Expert 1 and 2 responded that
there is no difference in security when choosing direct APIs, object relational mapper
(ORM), or object document mapper (ODM) and query builders. Expert 3, on the
other hand, stated to use ORMs or ODMs. Expert 4 emphasizes that especially in an
environment with lower experienced developers higher-level libraries like ORM/ODM
or query builder should be chosen to "reduce the risks that other developers possibly
disregard".
In question two, Expert 4 (also mentioned by Expert 2 in "Further Aspects") proposed
the development of an interface that can be used by inexperienced developers. The
interface denies direct access to the functionalities of the library and only offers self-
implemented functions that use only secure methods.
The answers of all experts of question three align with each other. They recommend
the usage of tools in general and in particular static code analysis tools (Expert 1 and
4), linter (Expert 4), architecture metric tools (Expert 3), and coding policies (Expert 4).
General recommendations from the experts regarding injection vulnerabilities were to
test the application and check where certain characters can be misinterpreted.

6.1.1.2 Frameworks

Express does not offer any native implementations to connect to the two DBMSs. Hence,
it will not be considered in the following.

MySQL

In Spring Boot data can be queried via different APIs. The APIs covered are Java
Database Connectivity (JDBC) and Java Persistence API (JPA). Since these APIs are also
used when communicating with other DBMS such as Oracle, the following findings are
also applicable for those DBMS.
First of all, it is also possible to connect to a MySQL database through the mysql-
connector-java dependency using a Connection object. This makes it possible for
a general Java project to connect to a database using JDBC. This object allows to
send unvalidated strings as SQL query via the executeQuery method to the database
and is therefore not safe from injection attacks. However, it also supports the us-
age of Java’s PreparedStatements that should be used to prevent SQL injection.
Calling the prepareStatement method of the Connection object will create a new
PreparedStatement object which can contain placeholders within its SQL query. These

47



6 Mapping of Vulnerabilities to Solutions

placeholders can then be set by calling the set’Datatype’ method, where ’Datatype’ de-
fines the datatype the driver will convert the input to. In case of the method setString
the given string value will be converted to SQL’s VARCHAR or LONGVARCHAR. This secures
the query process from possible injection attacks.
Moreover, it is also possible to use JPA without any Spring specific dependencies. If
this is done, an EntityManager object has to be defined which is queried through the
createQuery method. The same security issues as described above arise if a string
containing user-provided data is passed to the method. However, there is also the
option for PreparedStatements.
When using Spring’s JDBC the spring-boot-starter-data-jdbc dependency is required.
After connecting to the database, a query can be executed using the JdbcTemplate
class. It implements methods that can be used to query data from the database such
as query, queryForObject or queryForList. The latter requires a string to be passed
to them which can contain unvalidated user input. Hence, SQL injections are possi-
ble. Furthermore, the execute method can also be used, which executes SQL queries
without returning something, making them useful for the creation or deletion of tables.
Similar to the methods before, the string can, if user input is inserted into it, cause
unexpected behavior. In addition to this insecure JdbcTemplate class, Spring is provid-
ing the NamedParameterJdbcTemplate which can be used to execute named parameters.
Thereby, the parameter is passed in a second instance causing it to not be treated as
code, making the inclusion of user-provided data into the query safe.
JPA, on the other hand, functions as ORM that maps Java objects to tables within
the database. To use this functionality, the spring-boot-starter-data-jpa dependency is
required. Since this is an ORM, a corresponding Entity class has to be created. A class
is declared as such through the @Entity annotation. This class defines attributes that
correspond to columns that a table within the database has. Through this, queried data
is already cast to the data type that is defined within the class. Different querying meth-
ods can then be defined in a custom repository class that is extending CrudRepository.
Using the @Query annotation, a query can be defined. This method does not allow the
manipulation of the query.

MongoDB

MongoDB is usable natively if Spring Boot is chosen as the web framework for the
server and the spring-data-mongodb dependency is added to the project. Using a
MongoTemplate or a MongoRepository, similarly as described above with JDBC and JPA,
data can be queried or created. After researching for possible injections in MongoDB
under Spring Boot, no security concerns were found. The research contained the review
of the Spring Boot and MongoDB documentation, and Google and StackOverflow

48



6 Mapping of Vulnerabilities to Solutions

search with the search query "Spring MongoDB Injection". However, the results did
not indicate any possible vulnerabilities. In addition, the in-depth testing of injections
in both MongoTemplate and MongoRepository that are possible when using MongoDB
under Express did also not lead to any successful attacks. Only one StackOverflow
question mentioned that NoSQL injections are possible [124], but the attacks which
were described in the answer were not reproducible. Thus, a further security analysis
of this subject is needed which would exceed the scope of this thesis, to provide a
concrete assessment of its security.

6.1.1.3 Libraries

Since Spring Boot is already providing native support for querying data with MongoDB
or MySQL no further libraries could be found that support the native functionality or
implement similar functionality.

MySQL

In order to connect an Express Server to a MySQL database, the mysql library can
be used. After connecting to the database, a developer can query data using the
query function. This method offers three different approaches to query data. The
first one is a simple SQL string as the first and a callback function as the second
argument. This string will be executed by the SQL interpreter and therefore, if used
incorrectly, can open up the system to injection attacks. Incorrect use, in this case,
means the concatenation of user input to the SQL string. The next approach makes use
of placeholder values (also called prepared statements), which are escaped before they
are added to the query. The third approach can be used, if advanced query options are
needed. It does not add more security. The documentation of the library emphasizes
that [125]: "In order to avoid SQL Injection attacks, you should always escape any
user provided data before using it inside a SQL query". Therefore, developers should
be aware of potential security threats when using the first approach without further
escaping user input. Moreover, the library also gives examples of how certain value
types will behave when escaping them. In addition, the documentation also underlines,
that the NO_BACKSLASHES_ESCAPES mode needs to be disabled. Enabling it would cause
the backslash character to not be usable as an escape character anymore.
Moreover, access via ORMs is also possible. The most downloaded ORM that could
be found is sequelize which works for MySQL, Postgres, SQLite, and more. After
connecting to the MySQL database, models have to be defined. These models do,
as within most ORMs, represent the database tables that are planned to be queried.
Therefore, for example, a user variable needs to be created using the define method.
Here, the data types of the columns are defined, making adding user input to a WHERE

49



6 Mapping of Vulnerabilities to Solutions

clause secure. Therefore, the general procedure of model definition and model querying
is secure. Nevertheless, vulnerabilities were already found that allowed a SQL injection
anyway (CVE-2019-10748). Currently, no vulnerability is present. Another concern is
however the existence of the so-called raw queries. With the query method, direct SQL
queries can be executed which can contain user-supplied data and are thus vulnerable
to SQL injection. These raw queries also can be used with parameter binding, which is
an equivalent of stored procedures.

MongoDB

When using MongoDB in combination with Express multiple libraries are offered to
the developer. These libraries are the official MongoDB Node.js library mongodb and
an ODM called mongoose. While mongoose offers the possibility to define schemas and
therefore provides more convenience when working with data than mongodb, both
access data through the find method. Hence, the following security concerns are
applicable for both libraries. After connecting to the database and selecting a collection,
data can be queried from MongoDB. To achieve this, the find method needs to be
called (see Listing 2.2). If user input is embedded into the query, the web application
can be vulnerable to injection attacks. These attacks make use of the operators, which
MongoDB implements, that were further described in the fundamentals. The first set of
operators can also be used as a payload to manipulate the query. If we consider a PUT
REST endpoint as displayed in Listing 2.3, an attacker could set the payload in such a
way, that it would cause the query to return all data within the collection. The payload,
which is sent in the body of the request, must contain a further JSON object. This object
contains an operator as key and specific data as value. As described in the literature
and also shown in the example, the operator $ne as key, with " " as data evaluates to
true if no title is equal to " ". Consequently, every document in the collection, whose
title is not empty, will be returned by the find method.
Furthermore, the $where operator, can be used to hand JavaScript code to MongoDB
to change the query results. It gives the possibility to write code such as found in
the second example of Listing 2.3. Since this function accepts JavaScript as input
(the method mapReduce and the operators $accumulator and $function also allow
JavaScript input), an attacker can manipulate the query to receive all documents of the
collection. To achieve this, the attacker needs to make a specific request, which has
similarities with SQL injections. The request has to include a tautology as seen in the
example. Thus, the query results to true for every document.
These vulnerabilities can be dealt with, if a sanitization library is chosen. Libraries,
that help with this concern, are mongo-sanitize and express-mongo-sanitize (see Table 6.1).
More libraries exist, that implement similar functionality, but are not considered due to

50



6 Mapping of Vulnerabilities to Solutions

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.
express-mongo-sanitize 19,6k 2015-11-11 2021-01-07 1.63 p.Y. 8.36 p.Y. 88% 153.07 d.p.Iss. 4 18 93% 19%
mongo-sanitize 13,3k 2014-09-04 2020-03-02 0.44 p.Y. 2.38 p.Y. 50% 222.39 d.p.Iss. 3 15 51% 2%
Gathered: 2021-05-10

Table 6.1: MongoDB Sanitization Libraries

their generally low popularity and are only listed below. The above-mentioned popular
libraries function interchangeably, by removing any key that starts with $, and therefore
removing all operators that are passed to the find method. Nevertheless, express-mongo-
sanitize does offer more comfort, because it can be added to the middleware of Express
and thus removes the obligation to use it at every endpoint. In addition, another
group of interchangeable libraries exists. These are libraries that provide a plugin
for a MongoDB document schema. A plugin defines code that will be executed with
every request for this specific schema. Hence, libraries define sanitization logic that
can be used via the plugin method of a document schema. The libraries are by name:
mongoose-sanitizer-plugin, mongoose-sanitizer, mongoose-sanitize and mongoose-sanitize-json.
However, all of these libraries have rather low popularity with less than 120 downloads
per week (2021-05-10). Consequently, the first group of libraries is recommended due
to their larger community.
Further sanitization libraries, with a popularity of under 500 weekly downloads (2021-
05-10) are: mongodb-sanitize, mongo-escape, mongo-query-sanitize, mongo-query-filter, and
mongoose-sanitize.

6.1.2 XML External Entities
Solutions for the XML External Entities vulnerability can be found in the following.
Code examples were created for both JavaScript3 and Java4

6.1.2.1 Expert Interviews

The experts all had the same opinion about the XML External Entity vulnerability.
All of them answered with either disabling the processing of external entities or not
using XML in general. Expert 4 stated that other alternatives like JSON should be used,
because XML is "too complex, too faulty with the meaning of being misinterpreted in
the application". In addition, Expert 3 recommends completely denying the processing
of XML in case it is not used mainly as data format.

3https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/xxe.js
4https://github.com/moritzhuether/mastersthesis/tree/main/GeneralJava/04-XXE/main/src

51

https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/xxe.js
https://github.com/moritzhuether/mastersthesis/tree/main/GeneralJava/04-XXE/main/src


6 Mapping of Vulnerabilities to Solutions

6.1.2.2 Frameworks

The frameworks that are based on Node.js, namely React, Angular, Vue.js, and Express,
do not natively support XML. However, if a developer persists in the usage of XML, an
XML parser library is necessary.

Java on the other hand, and therefore Spring Boot, offers many XML parsers in-
ternally and through libraries. As described in the literature and the expert interviews,
the disabling of DTDs is recommended. Depending on the internal implementation
of Java that is used to parse XML data, different configurations have to be consid-
ered. The OWASP Foundation [31] collected the needed configurations for multiple
implementations.

6.1.2.3 Libraries

The library sax is a parser that can be used for XML or HTML in Node.js. This library
was chosen for evaluation because of its immense download count and because it is
also used as a dependency in other XML parser libraries called xml2js and xmldoc. It
implements a strict mode, which is not enabled by default and therefore needs further
configuration. Setting the mode to true will force the parser to ignore any entities that
are not contained in the predefined set of XML entities. The entities within this set are:
&amp;, &apos;, &gt;, &lt;, and &quot;. Therefore, any other entities, like externally
defined ones, will cause an error. A similar strict mode is also used by xml2js. xmldoc
on the other hand does not implement its own strict mode but uses sax with its default
configuration, also requiring further configuration. Many other XML parsers exist,
however, the general approach should be to enable a secure mode if it is not by default.

Java is also offering different libraries to parse XML data. As described above, please
refer to the OWASP Foundation [31] to receive guidance on how to disable external
entities within the used parsing library.

6.1.3 Cross-Site Scripting
This subsection deals with possibilities to reduce XSS vulnerabilities in the named web
frameworks. For all three client-side frameworks, React5, Vue.js6 and Angular7, code
examples were created to show framework-native security mechanisms. Within the

5https://github.com/moritzhuether/mastersthesis/blob/main/React/main/src/XSS.js
6https://github.com/moritzhuether/mastersthesis/blob/main/Vue/main/src/components/
HelloWorld.vue

7https://github.com/moritzhuether/mastersthesis/tree/main/Angular/main/src/app

52

https://github.com/moritzhuether/mastersthesis/blob/main/React/main/src/XSS.js
https://github.com/moritzhuether/mastersthesis/blob/main/Vue/main/src/components/HelloWorld.vue
https://github.com/moritzhuether/mastersthesis/blob/main/Vue/main/src/components/HelloWorld.vue
https://github.com/moritzhuether/mastersthesis/tree/main/Angular/main/src/app


6 Mapping of Vulnerabilities to Solutions

React example, the in the following described escaping and sanitization libraries are
also displayed.

6.1.3.1 Expert Interviews

In question one, the experts all agreed that they use framework-native functions.
However, Expert 2 emphasized to not use these security mechanisms on their own and
to also use an additional CSP. The experts, in contrast to the literature, also stated that
they do not use additional libraries to deal with XSS vulnerabilities.
As further aspects the experts mentioned always think about where user input can be
at (Expert 2) and to do server-side validation (Expert 3).

6.1.3.2 Frameworks

XSS is a vulnerability that has already received a lot of attention from React, Vue.js,
and Angular. These web frameworks all offer approaches to protect web applications
against XSS attacks, which will be discussed in the following paragraphs. However,
firstly not directly framework-specific but HTML5-specific security mechanisms will be
discussed since all three client-side frameworks use HTML5.

HTML5-Specific Solutions

This paragraph will elaborate the security concerns arising through innerHTML. Directly
binding the content to HTML by either using innerHTML or other methods with the same
outcome, can lead to the injection of HTML and therefore also JavaScript. Fortunately,
if this method is used, the <script> element will not be executed [126]. Hence, the
injection of strings such as <script> alert(’XSS’) </script> will not result in the
display of the alert. However, other inputs can be used to execute code. These inputs
make use of event handler such as onError or onFocus. One possible input is an image,
which has an invalid source and an error handler in which code can be executed. The
input looks like this: <img src="..." onerror="alert(’XSS’)"> [127].

Framework-Specific Solutions

In React, JSX is commonly used to render content. If the developer wants to include
the values of an variable to the content, this can be done by using curly braces: <h1>
Welcome, {username} </h1>. Including data in that way results in React transforming
the input to a string, before rendering it. Hence, as stated in the documentation of React
[128]: "It is safe to embed user input in JSX". The data that is embedded is escaped
before it is rendered. Characters such as ", ’, &, < and > are escaped by replacing them

53



6 Mapping of Vulnerabilities to Solutions

with their corresponding HTML entity. This is of course an effective measurement
against XSS but also results in limitations. Escaping the characters < and > is not
possible in certain web applications if for example rich-text support is needed. In
this case, HTML elements such as <bold> or <h1> will no longer work. Nevertheless,
React is also offering other methods to display data. React’s dangerouslySetInnerHTML
method, which is a replacement for the innerHTML method, can be used. This methods
make it possible to directly change the HTML content of a <div> element and therefore
it is not safe of injection attacks. To deal with this security concern, React firstly changed
the name of the method to directly alarm developers of the security concerns connected
with it. Secondly, using this method was made artificially harder by React. It does not
simply use a string as a parameter but requires an object with a __html key that con-
tains the actual content [129]. In consequence, using this function without being aware
of the security concerns is very hard. No protection of URL or CSS injections was found.

Vue.js follows a similar approach as React. When binding data in Vue.js using a
template, the content is escaped: <h1> Welcome, {{username}}</h1> . Just like React,
it also offers a possibility to render unescaped HTML content by passing v-html="name"
to a <div> element. In contrast to React, no alarming name was chosen, and also the
usage of this unsafe approach was not made harder. Finally, Vue.js is also not imple-
menting any URL sanitizer to deal with the injection of :javascript into URLs.

Angular, on the other hand, offers even more protection. First of all, Angular im-
plements the security contexts of HTML, Style, URL and ResourceURL. These contexts are
used if a given value is supposed to be interpreted in one of the contexts. Therefore,
Angular uses the HTML security context if the developer binds data to innerHTML
(only if this binding is done via [innerHTML]= inside of a HTML tag) or wants to
add variables to the DOM (called interpolation in Angular: <h1> Welcome, {{user-
name}}</h1>) [130]. This makes the use of innerHTML with Angular safe, while React
and Vue.js suffer from the issues explained above. This functionality is implemented
through the DomSanitizer which is provided with the context and the string. In
order to evade the automatic sanitization of Angular, a developer can make use of
the bypassSecurityTrustHTML method (methods for URL or CSS can be used analo-
gously). This tells Angular, to trust the data coming from this source. Similar to React’s
dangerouslySetInnerHTML method, the method’s name was chosen to be alarming
and therefore stop developers from using it without knowing of its security concerns.
Additionally, using ElementRef with nativeElement gives a developer the possibility
to directly access the DOM. If this is done, Angular’s sanitizers do not sanitize what is
passed to the DOM. The documentation of Angular declares this feature as a security
risk and also refers to its security guide [131].

54



6 Mapping of Vulnerabilities to Solutions

Express does not offer security mechanisms that are native to the framework. Since
server-side rendering is recommended by OWASP to help reduce the possibility of
reflected and stored XSS attacks [36], the usage of libraries is necessary.

Spring Boot on the other hand has a native implementation of an HTML escaper
within the HtmlUtils class. The htmlEscape method can be used to escape all special
characters to their corresponding HTML entity.

6.1.3.3 Libraries

For the Node.js environment, different groups of libraries could be found. The most
popular representatives of their group can be seen in Table 6.2. First, there is a group of
libraries, that do HTML escaping. These libraries, with some exceptions, focus on the
task of removing certain characters. Most commonly ", ’, &, < and > are escaped. The
libraries do not offer any additional functionality for the client-side frameworks, since
these already provide either native support for this functionality or even sanitization.
However, the libraries can be used for Express, to deal with stored or reflected XSS
attacks. All three escape-html, html-escaper and escape-goat have a high popularity. Even
so, the library html-escaper receives more maintenance by taking less time to resolve an
issue and also receives the best quality score out of the three. Since these libraries work
interchangeably, html-escaper should be chosen based on the better performance in the
library metric. In addition, also other libraries such as stringify-entities, htmlescape or
@wordpress/escape-html are possible choices for this group because all implement the
same functionality.
The second group is on the other hand not concerned with completely disallowing
HTML but with filtering out potentially malicious contents. All of the three most
popular sanitizers use a whitelist approach which they also lay open within their docu-
mentation. This means they define a list of allowed HTML elements and their attributes.
The previously mentioned example of the <image> element with a non-existing source
and a corresponding malicious onError attribute would be harmless if a sanitization
library is used. The reason for this is that within all three whitelists, the onError
attribute is not contained and therefore removed from the string. The libraries deal
also with the problem of the :javascript scheme injection, by either implementing
a sanitizer for the href attribute (xss and dompuritfy), or by completely removing it
(sanitize-html). Also, the injection of CSS is not possible since the whitelists also do
not contain the style attribute. Tests, which contained classic XSS attacks as they are
described in subsection 2.1.3, did not lead to a noticeable difference between the three
libraries. Even so, since dompurify was explicitly mentioned by the OWASP Foundation

55



6 Mapping of Vulnerabilities to Solutions

[33], often highlighted in other sources [132], [133] and also because it is maintained
well, it is considered the preferred choice between these libraries. However, conducting
more in-depth security testing of these sanitizers is necessary to give a statement about
their security.
The third group, which is only concerned with URL sanitization, is needed to make
potentially unsafe URLs safe to use. @braintree/sanitize-url is the name of the only
library found in this group. It makes use of regular expressions in order to find the
:javascript or :data scheme inside of URLs.
Finally, the fourth group is countering XSS vulnerabilities through the configuration
of HTTP headers. See subsubsection 6.3.2.2 for further information regarding these
libraries.
The usage of these libraries does of course not remove the possibility that an XSS
attack against a web application implementing them is successful. These libraries can
contain vulnerabilities themselves. This means that for example malicious input is
not filtered correctly or benign input is removed. In addition, although the libraries
have often only a minimal interface with one method that does the sanitization or
escaping, it can still be misused. First of all, they must be applied to all inputs that
are considered untrusted, especially inputs provided by users. If only one input is not
made trustworthy, attackers can still exploit the system. Furthermore, inputs that were
made trustworthy, should not be enhanced with user-provided data. In case this is
done, the input becomes untrustworthy again and needs to be resanitized or reescaped.
Based on these arguments, the libraries are adding an additional layer of security to
the web application, but security can still not be guaranteed. Therefore, the usage of
further tools is recommended to test the correct implementation of the framework’s
security mechanisms and used libraries.

Similar libraries do also exist when using Spring Boot. First of all, for encoding,
there is the owasp-java-encoder library from OWASP. This library is also encoding HTML
by calling the forHTML method of the Encode object. This approach is happening based
on the encoding steps described in [36]. Another possible solution is Apache Com-
mons StringEscapeUtils class which offers different escaping methods also including
HTML. The escapeHtml4 method should be used to include all HTML 4.0 entities.
Furthermore, the library jsoup exists. It offers the clean method, which compares
the HTML against a whitelist and therefore sanitizes it. The library offers different
whitelists, or Safelists as it is called in the library, that can be used to filter malicious
content. These Safelists have different levels of strictness and can be used depending
on the context. The developer needs to choose a list since no default option exists for
the clean method.

56



6 Mapping of Vulnerabilities to Solutions

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.

escape-html 17,1M 2012-08-20 2018-03-07 0.57 p.Y. 4.12 p.Y. 100% 25 d.p.Iss. 8 976 68% 64%
html-escaper 10,7M 2015-04-08 2021-02-18 1.47 p.Y. 4.59 p.Y. 100% 0.67 d.p.Iss. 1 82 97% 51%
escape-goat 4,6M 2017-05-27 2021-04-16 1.47 p.Y. 2.52 p.Y. 100% 7.07 d.p.Iss. 8 88 83% 51%

xss 1,4M 2012-09-19 2021-05-06 7.75 p.Y. 47.07 p.Y. 75% 81.84 d.p.Iss. 29 356 97% 56%
dompurify 1,4M 2014-05-21 2021-04-28 10.32 p.Y. 198.92 p.Y. 100% 8.96 d.p.Iss. 70 453 93% 58%
sanitize-html 1,1M 2013-09-10 2021-03-19 12.25 p.Y. 65.20 p.Y. 96.55% 309.94 d.p.Iss. 60 590 96% 53%

@braintree/sanitize-url 382k 2017-08-08 2021-04-29 3.46 p.Y. 18.82 p.Y. 100% 14.18 d.p.Iss. 12 53 83% 31%
Gathered: 2021-05-10

Table 6.2: XSS-Related Libraries

6.1.4 Insecure Deserialization
To understand the solutions that exist for Insecure Deserialization, they are listed and
evaluated in the following. Also, code examples were created that demonstrate an
insecure deserialization attack for both JavaScript8 and Java9.

6.1.4.1 Expert Interviews

In the first question, none of the experts was able to name a library. Expert 2 replied
with generally avoiding more complex serializations and using JSON if possible. Expert
4 said that he relies on his own implementation.
Question two also resulted in no usable answers since all experts do not have any
experience with monitoring serialization errors.
A further aspect mentioned by Expert 2 was that this vulnerability has a very high
impact but is hard to be exploited.

6.1.4.2 Frameworks

JavaScript mainly uses JSON as data format and offers the methods JSON.stringify
and JSON.parse to deal with serialization and deserialization. In contrast to objects
serialized in Java, data serialized in JSON is not in a binary format. Further, this
language-agnostic format of JSON helps it to reduce the Insecure Deserialization vul-
nerability. The deserialization of a JSON string does not trigger the execution of any
embedded methods. However, the tampering of data is also possible if a JSON string is
not protected as described in the literature.
Choosing JSON over other data formats enhances the security of a web application.
Nevertheless, the encryption of, for example, authorization tokens (like JWT) is still

8https://github.com/moritzhuether/mastersthesis/blob/main/Express/
08-InsecureDeserialization/serialisation.js

9https://github.com/moritzhuether/mastersthesis/tree/main/GeneralJava/
08-InsecureDeserialization/main/src/main

57

https://github.com/moritzhuether/mastersthesis/blob/main/Express/08-InsecureDeserialization/serialisation.js
https://github.com/moritzhuether/mastersthesis/blob/main/Express/08-InsecureDeserialization/serialisation.js
https://github.com/moritzhuether/mastersthesis/tree/main/GeneralJava/08-InsecureDeserialization/main/src/main
https://github.com/moritzhuether/mastersthesis/tree/main/GeneralJava/08-InsecureDeserialization/main/src/main


6 Mapping of Vulnerabilities to Solutions

necessary. Additionally, untrusted data should preferably be omitted.

Java’s deserialization implementation does not offer sufficient protection. In case
no further prevention techniques are used, serialized objects should be encrypted to
establish integrity of the objects. Otherwise, no data, coming from an untrusted source
or that contain any input provided by users, should be deserialized. In addition, a
developer can extend the deserialization process by creating a custom class that extends
ObjectInputStream. Through this, it is possible to change the deserialization behavior
to make use of the ’look ahead’ serialization approach in which the class, the serialized
data represents, is validated before the deserialization. Thus, only classes that are
intended to be deserialized are allowed to enter the system. [134]

6.1.4.3 Libraries

The Node.js-based frameworks can make use of the node-serialize library. This library
adds to the existing implementation of JSON the possibility to also serialize functions.
However, as displayed by Chaudhary [135] it is possible to exploit this functionality.
Therefore using this library is not recommended.

Spring Boot offers the possibility to use the SerialKiller library. This library gives
a concrete implementation of the previously described ’look ahead’ approach. This
functions by replacing the default ObjectInputStream with SerialKiller’s implementa-
tion of it. Through the use of a configuration file, different white and blacklists can be
defined. To configure the library securely, only the classes that are planned to be deseri-
alized within the application should be put into the whitelist. In case a non-whitelisted
class is tried to be deserialized the library will throw an InvalidClassException. How-
ever, this library can not offer any default configurations for the black- or whitelist and
therefore the security is still up to the developer configuring the library. Unfortunately,
it also has not received an update since 2016, thus the following library should be
considered.
The library Apache Commons IO and its ValidatingObjectInputStream class can be
used. This class needs to be created with a set of different classes, only allowing the
deserialization of these predefined allowed classes. In contrast to SerialKiller, it still
receives updates and does not require a complex configuration file. Therefore, its usage
is recommended.

58



6 Mapping of Vulnerabilities to Solutions

6.1.5 Denial Of Service
The solutions that could be used on an application level to prevent DoS attacks are
evaluated in the following.

6.1.5.1 Frameworks

In order to deal with DoS attacks, Express offers different supported libraries. First of
all, its body-parser library per default limits the size of the request body to 100 kilobytes.
Furthermore, it offers the connect-timeout library which timeouts request after a certain
amount of time. However, as described in the library’s documentation, Node.js will
still terminate the process which means that it cannot be used to prevent Dos attacks.

Using Spring Cloud Gateway, a rate limiter can be implemented. After adding it
to the dependencies, the gateway can be configured to filter requests. The currently ex-
isting implementation for the Redis database implements the Token Bucket Algorithm.

6.1.5.2 Libraries

For Express, different limitation libraries can be used to support the DoS attack pro-
tection. The libraries ddos, bottleneck, limiter, ratelimiter, express-brute, express-limiter,
express-rate-limit and rate-limiter-flexible all offer a similar approach by limiting the
amount of requests a user can make in a given time. Furthermore, the library safe-regex
is recommended by Express to deal with DoS attacks. It sets the amount of allowed
repetitions per default to 25 and therefore disallowing to spend to much resources on
the regex algorithm.

The library Bucket4j can also be used in Spring Boot to implement rate-limiting again
using the Token Bucket Algorithm. The library defines a Bucket object, that uses a
Bandwidth object to define its limits. At every request, the developer has to call the
tryConsume method to remove tokens from the bucket. Once the bucket is empty, the
method will return false and the developer has to act accordingly.

6.1.6 Input Validation
Different framework-native functionalities and libraries are evaluated based on how
well they support a developer to validate user input.

59



6 Mapping of Vulnerabilities to Solutions

6.1.6.1 Frameworks

HTML5- and framework- specific solutions for input validation are evaluated in the
following.

HTML5-Specific Solutions

User input is often received via web forms. HTML5 added new types for semantic
validation of data coming from an <input> element inside of a form. This element
defines a broad assortment of types, which can be used to validate input. Listing 6.1
shows an example for an input field of an email. If this type is used, the entered text
is validated based on a regular expression as seen in the listing [136]. However, this
regular expression also accepts emails that do not have a top-level domain like for
example testemail@gmail. Therefore, the pattern attribute can be used to validate by
a different regular expression. Furthermore, attributes for the maximal length of a text
(maxlength), for the range of a number (min and max), and determining whether the
value is not null (required) are present. A direct implementation of the Containment
method is not existing, but the patterns attribute with the correct regular expression
can be used instead. In addition to the input types, a developer can also use JavaScript
to validate input. The input can be validated when submitted or when changed, using
restrictions implemented by the developer in JavaScript.

<input type="email" name="email" required>
2 Validates based on the following regular expression:

/^[a-zA-Z0-9.!#$%&’*+/=?^_‘{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*$/

Listing 6.1: <input> Element of type Email

Framework-Specific Solutions

In React input validation can be indirectly achieved through its prop-types library. This
library checks whether props, data that is passed between components, are of a spe-
cific type. The library, which is developed by Facebook and therefore counted as
framework-native, offers the functionality to enforce certain primitive JavaScript types
like string or number for the props. No further native restrictions except required exist.

Vue.js has no implementations other than the standard HTML5 forms and the use of
self-implemented logic with JavaScript.

Angular, on the other hand, offers two different types of forms. These types are
the template-driven forms and the reactive forms. In template-driven forms, it is

60



6 Mapping of Vulnerabilities to Solutions

possible to use the HTML5 types for input validation as described above. By pass-
ing minLength="4" to the <input> element, Angular uses the MinLengthValidator
directive and therefore apply the minimum length validation. If a type is passed, it
is validated in the same manner. The reactive forms, on the other hand, need the
implementation of a formControl model. Inside this model, different validators can be
assigned from the Validator class. These built-in validators can be used to validate
the minimum length, the range of a number, and more (see [137] for the full list). In
addition, both forms offer the possibility to define custom validators.

The express-validator is a middleware offered by Express to validate input. This li-
brary uses sanitizers and validators of the validator library. For more information about
the implemented functions of validator please refer to subsubsection 6.1.6.2. These
functions can be passed as parameters to for example Express’ post method. If this is
done the defined validators are used before the method is entered. The custom method
also gives the possibility to add a custom sanitizer or validator. Also, a schema can be
defined, that offers the possibility to define a set of validators and error messages for
expected variables.

Spring Boot makes use of the JSR-303 Bean Validation specification, which defines
different validators. Similar to the SLF4J (see subsubsection 6.3.4.2), this specification is
offering an API so that different reference implementations can be used. As described
by [138], the Hibernate Validator is the "de-facto standard" reference implementation for
validation. Using the javax.validation dependency, different constraints can be added
to an Entity class. In order to validate these constraints, a developer can add the
@Valid annotation in front of the parameters that are passed to an endpoint of a
RestController, what is possible through the spring-boot-starter-validation dependency.
In that way, the constraints are validated with the validation methods defined in the
Hibernate Validator.

6.1.6.2 Libraries

Different groups of libraries exist to validate data for Node.js-based frameworks (see
Table 6.3). The first group helps with the general validation of single values. Thus,
the libraries of this group define different methods to check whether a certain string
follows certain restrictions that are defined in the method. The by far most popular
library of this group is called validator. It implements a large amount validators such as
isIBAN, isEmail, and many more. In addition, it also implements further sanitizers that
can be used to normalize emails, black or whitelist data, or trim whitespaces. Based
on the high popularity, dependents, and maintenance of this library, one can assume

61



6 Mapping of Vulnerabilities to Solutions

that it is the standard for input validation in Node.js. Different libraries exist, which
offer similar functionalities but implement fewer validators. These libraries are for
example validatorjs, node-input-validator or better-validator. Since these validators are in
comparison not popular, they are not considered. Furthermore, different libraries exist,
which only implement single validators such as is-negative-zero or email-validator. Since
these do not offer a holistic approach, they are also not further evaluated.
Another, even larger group of libraries, are JavaScript or JSON schema validators.
These libraries define a schema in JSON containing the different restrictions for the
data that is to be validated. Libraries like ajv, joi and yup offer such schema builders
containing different validators. Since these libraries offer highly similar functionality,
are all maintained well, and also popular, no clear recommendation between them can
be given. The choice comes down to personal preference.

In React, a developer can choose the library formik which improves the convenience
when working with forms in React. The validation needs to be self-defined through
a yup JSON schema. Furthermore, the library react-hook-form works in the same way
but offers support for different schema builder libraries. In addition to React’s native
prop-types library, Airbnb is offering the airbnb-prop-types library, extending the function-
ality of React’s native solution. This gives the possibility to add ranges or predicates as
validators. Finally, the library formsy exists which offers native validators. However, the
amount of validators available is less than what can be found in the general Node.js
library validator. Therefore, only Airbnb’s prop type library could be considered, but as
stated above, this does not directly affect input handling.

Vue.js offers the possibility to use vuelidate or vee-validate. Both offer many valida-
tors, to restrict the range of a number, check whether the string is an email or an URL,
and define whether the attribute is required or not. Furthermore, custom validators can
be implemented. Out of a security perspective, the libraries can be used interchange-
ably. Both libraries do offer high support for managing the presentation model and are
presumably chosen for this reason.

For Angular additionally to its native solution libraries exist. These libraries are
ng2-validation, ngx-validate, angular-validation and ngx-validator. They are generally
rather unpopular with a maximum of 16k downloads (2021-05-31) while other, non-
Angular specific solutions have more than one million downloads. Hence, these are not
further evaluated.

62



6 Mapping of Vulnerabilities to Solutions

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.
validator 5M 2011-01-04 2021-04-20 19.99 p.Y. 186.11 p.Y. 87% 59.06 d.p.Iss. 314 3271 100% 77%

ajv 46.1M 2015-05-29 2021-05-09 56.27 p.Y. 418.91 p.Y. 91% 40.87 d.p.Iss. 133 4119 99% 85%
joi 3.3M 2012-09-16 2021-04-09 24.27 p.Y. 259.82 p.Y. 97% 47.69 d.p.Iss. 181 3911 85% 76%
yup 2M 2014-10-18 2021-03-10 15.99 p.Y. 93.29 p.Y. 81% 66.00 d.p.Iss. 120 1109 76% 65%
Gathered: 2021-05-10

Table 6.3: Validation Libraries

6.1.7 Open Redirects And Forwards
As recommended in the literature, a developer should either not redirect to any
external URLs at all or only when these URLs are contained in a whitelist that is
stored on the server. The maintenance and correct use of such a whitelist is generally
unspecific to the underlying programming language or used frameworks and libraries
and therefore completely up to the developer. However, certain libraries that are
reviewed in subsection 6.1.6 implement methods to check a string against a predefined
whitelist. Such a library, called validator, can be seen in subsubsection 6.1.6.2. In case the
redirection to a user-provided page is necessary, the validator library can also be used
to validate the URL. It disallows per default the :javascript scheme and thus already
protects against an XSS attack through the redirection. In Spring Boot, the Hibernate
Validator is validating a URL with the URL class of java.net which also disallows this
scheme. However, it does not protect from the literature described social engineering
attacks, therefore the proposed additional page, telling the users that they are about to
leave the page should be implemented.

6.2 Permission- and Access-based Vulnerabilities
The upcoming subsections evaluate solutions that deal with authentication and access
control.

6.2.1 Broken Authentication
This subsection deals with solutions regarding password policies and password hashing
as well as general authentication through JWTs and session cookies. In addition, code
examples were created for the correct configuration of the below listed password
hashing algorithms10 11.

10https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/pwHashing.js
11https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/

java/main/demo/WebSecurityConfig.java

63

https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/pwHashing.js
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/WebSecurityConfig.java
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/WebSecurityConfig.java


6 Mapping of Vulnerabilities to Solutions

6.2.1.1 Expert Interviews

In the first question, only Expert 2 could name a library, which is called zxcvbn. Expert
3 and 4 both referred to Keycloak as their primary resource for user management
and therefore no password policies are considered. This tool is however not further
evaluated in this thesis since it is not a framework-native functionality or a library.
In question two again Expert 2 was able to enumerate libraries, which are argon2,
brcypt and scrypt. Expert 2 emphasizes choosing one of these three solutions and not
implementing a solution yourself. Expert 1 rated the time a hashing function needs
to be important if passwords are hashed, with slow hashing functions being preferred
over fast ones. Experts 3 and 4 both have a default hashing function but were not able
to name it. Peppering was not done by any of the experts and is therefore not further
evaluated in the thesis.
Question three showed that multi-factor authentication should be considered if financial
or personal data is accessed.
The fourth question gave insights into the different methods of authentication. Expert 1
stated that all methods displayed in the question (JWT, session cookies, OAuth) can
be secure if implemented correctly. Expert 2 prefers the implementation of an existing
session library or the usage of OAuth rather than JWT. The stated reason for this is
missing features in JWTs such as invalidation. Both, Expert 3 and 4, emphasized to
always use libraries or using external services like Active Directory or Keycloak.
Further aspects of this vulnerability are the way cookies and tokens are stored (Expert
1), rate limiting and automated attacks (Expert 2), and ’the human’ as a very common
point of failure through social engineering (Expert 4).

6.2.1.2 Frameworks

The following displays framework-native solutions for password policies, password
hashing and authentication.

Password Policies

The frameworks React, Vue.js, Express, and Spring Boot do not offer any native pass-
word policies.

Angular offers the in subsubsection 6.1.6.1 described validators that can be used
to also implement a simple password policy. The minimum and maximum of the
password length can be validated. Furthermore to these native validators, a custom
validator can be defined. However, no password-specific validators exist.

64



6 Mapping of Vulnerabilities to Solutions

Password Hashing

In Express, the crypto module can be used to implement PBKDF2 or scrypt. The pbkdf2
method does not offer any secure defaults for choosing a salt, the key length, or the
iterations. However, it is not to neglect, that the documentation is referring to NIST
SP 800-132 for guidance on how to configure the salt. The method uses SHA1 as
default hashing function which is not favored [58]. Additionally, the example provided
for the pbkdf2 method in the documentation does not completely match with the
recommendations provided by the OWASP Foundation [58], since only 100.000 instead
of 120.000 iterations are used. On the other hand, the scrypt method is providing
defaults for cost, block size, and parallelism. Even so, these values do also not align
with the literature by having either a too low cost (16 MiB instead of 64 MiB) or a too
low degree of parallelism (1 instead of 4).

Spring Boot offers the PasswordEncoder interface to hash passwords through Spring
Security. This interface has concrete implementations for Argon2, bcrypt, PBKDF2,
and scrypt. The implementation of Argon2 aligns with the literature. It uses 64 MiB
of memory (which is more than recommended but does not have an impact on the
security, only on the performance), two iterations, and parallelism of one. bcrypt uses a
default salt length of 16 bytes, and ten salt rounds. PBKDF2’s implementation does
not align with the configurations found in the literature. Its default salt length is only
eight bytes long, it uses SHA1 which requires 720.000 iterations [58] but is only doing
185.000 iterations. Finally, scrypt does use a CPU cost of only 16 MiB instead of 64 MiB,
when considering the setting of the degree of freedom (one) that is set per default. The
block size is configured correctly.

Authentication

Express does not offer a native functionality to implement authentication. In order to
implement authentication, additional libraries are required.

Spring Security is offering native authentication for Spring Boot. In general, the
authentication filter of Spring Security is intercepting the requests to URLs that are de-
fined to be only accessible then authenticated. This filter then passes a Authentication
object with the credentials to the AuthenticationManager that then accesses all avail-
able AuthenticationProviders and passes the Authentication object to them. After
this, the providers use their supports method to determine whether they can au-
thenticate this user. If they do, they call the UserDetailsService which is return-
ing details of a user with a given name by calling the loadUserByUserName method.
This method can for example use JPA to access any data stored in a database. The

65



6 Mapping of Vulnerabilities to Solutions

AuthenticationProvider is then using its authenticate method to authorize the user
based on the logic defined in the method. The result is again an Authentication
object containing the Principal which represents the user and the authorities (in the
Authority object), which define the user’s rights.
If Spring Security is added to the dependencies, Spring Boot is automatically using
basic authentication with a user whose password is set randomly and printed to the
console when starting the application. Moreover, Spring Security is natively supporting
LDAP authentication by adding a provider for that and also UserDetailsServices that
receive data from within the memory or using JDBC. In addition, custom implemen-
tations of the AuthenticationProvider class can be used to shape the authentication
process. A developer can make use of the AuthenticationManagerBuilder object that
is passed to the configure method of the WebSecurityConfigurerAdapter class. Here,
with the authenticationProvider method, a custom provider can be defined.

JWT:

No native JWT implementations were found for Express and Spring Boot.

Session Cookies:

Express offers one of its self-maintained middleware modules called cookie-session. First
of all, the name of the cookie that is set through the library for the session identifier
does not have a generic name. Its name defaults to express:sess and therefore gives
away Express as used server framework. The name should be changed in the options.
The hardening of the session cookie is considered. Secure defaults to true if HTTPS
is used. HttpOnly is also true. No domain is passed and the default path is /. Ses-
sion expiration can be achieved by setting req.session to null. The session IDs are
signed by passing keys via the options to the library. These keys are passed further
to the cookies library which cryptographically signs them based on SHA1 HMAC. To
use more secure HMAC algorithms, a Keygrip object can be passed to cookie-session
so that for example SHA256 is used for signing the session. However, the library
does not contain any guidance regarding the length of the session identifier or its en-
tropy. Therefore, using it without further knowledge does not result in a secure solution.

In Spring Boot, Spring Security enables session cookies by default. The name of
the session cookie is JSESSIONID and therefore also not generic. The cookies are se-
cured by setting HttpOnly to true. However, Secure defaults to false. The expiration of
the session can be defined by passing a time to server.serverlet.session.timeout.
The session can be stored through for example JDBC or in a redis database. The
corresponding SessionRepository class will implement methods to handle a session.

66



6 Mapping of Vulnerabilities to Solutions

The session ID is generated with the randomUUID method from java.util.UUID. This
method generates a version four UUID (Universally Unique Identifier) based on the
SecureRandom class which generates a "cryptographically strong random number" [139]
as stated in the documentation. The general session management in Spring Boot is
handled through the SessionRepositoryFilter. Finally, the session is migrated using
the migrateSession method per default if a user authenticates successfully, protecting
the server from session fixation attacks.

6.2.1.3 Libraries

Library-provided solutions for password policies, password hashing and authentication
are discussed in the following paragraphs.

Password Policies

For Node.js-based frameworks different libraries exist that can be chosen to configure a
password policy. The two libraries with the highest level of popularity are password-
sheriff and password-validator. The former also functions through the definition of rules.
These rules however are very minimal by only containing the length, the types of
characters and how many of them that are contained in the password, and the number
of identical characters that are allowed in a row. No default configuration is present.
The library password-validator is working comparably by also defining rules for a schema.
The amount of rules that are included in password-validator is higher, but they do not
contain any of the recommendations that were defined in [57] except for the possibility
to validate the length of the password. Further libraries like common-password-rules,
passwdqc and password-policy offer a similar approach but are less popular and thus not
further evaluated in detail.
These libraries do only offer the functionality to define a policy. Since this leaves room
for mistakes and the literature also recommends the usage of strength meters, libraries
that implement this functionality should be considered. In general, these libraries take
the user-provided password and try to categorize it on a scale from bad to good. The
most commonly used library is zxcvbn which is an open source project of Dropbox.
As stated in its documentation it considers common passwords, common names, En-
glish words that are popular within Wikipedia and television, sequences of characters,
and so-called ’l33t speak’ (replacing characters with similar looking numbers). The
library will return a score reaching from zero (too guessable) to 4 (very unguessable).
The score is derived from the estimated amount of tries that are needed to crack the
password. Also, suggestions to improve the password are returned that then can be
displayed to the user. Further libraries exist such as check-password-strength, hardpass,
tai-password-strength and many more. Since Carné de Carnavalet and Mannan [140]

67



6 Mapping of Vulnerabilities to Solutions

and the OWASP Foundation [141] highlight zxcvbn as their preferred choice, further
libraries are not evaluated.

The library Passay can be used to define a password policy in Spring Boot. A
PasswordValidator object can be initialized with one or many Rule objects. These
objects represent different constraints within the policy that have either positive or
negative matching conditions. The positive rules define how the password should look
like, by giving the possibility to pass a regular expression, define allowed or contained
characters, and limit the length of the password. A set of rules, that help implementing
in the literature recommended properties, is represented through the DictionaryRule
and DictionarySubstringRule objects. These objects can be initialized with a list of
common words (which has to be defined by the developer) and will lead to not accept-
ing a password containing these words. The sequence rules can be used to disallow the
usage of multiple identical characters sequentially. Furthermore, multiple constraints,
that were not recommended in the literature but are often seen within web applications,
can be implemented through this library. These constraints require a specific number
of characters from a certain type of characters, disallow passwords that were used in
the past, or do not allow the password to be related to the username.
As mentioned earlier, these constraints defining libraries do not ensure a secure pass-
word policy. Hence, zxcvbn, which also has a Java implementation through the library
called zxcvbn4j, should be used instead.

Password Hashing

Express also offers the possibility to use libraries to hash passwords. First, the library
argon2 offers the functionality of the cryptographic hashing algorithm Argon2. Argon2i,
Argon2d, and Argon2id, which are different types of Argon2 that have different resis-
tances to side-channel or GPU-based attacks, are implemented in this library. It uses
Argon2i by default, which is as stated in [142] also usable for password hashing. In
general, its API is very easy to use and only requires to pass the to be hashed password
to the hash method. A password can later be verified by passing the stored hash of it
and the password provided by the user to the verify method. Its default values align
mostly with the recommendations found in the literature. The salt length is 16 bytes,
the amount of iterations is three, the default memory cost is 4 MiB ([58] recommends
15 MiB, but also with only two iterations) and the parallelism is set to one. Since the
amount of required memory size decreases through increasing the number of iterations
no clear statement about the security of these defaults can be given. Thus, the values
proposed in the literature should be chosen. The salt is automatically generated using
the randomBytes method of the crypto module and therefore cryptographically safe.

68



6 Mapping of Vulnerabilities to Solutions

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.
bcryptjs 942k 2013-05-01 2019-03-01 3.22 p.Y. 13.15 p.Y. 73% 106.06 d.p.Iss. 10 1356 95% 55%
bcrypt 685k 2011-02-21 2021-05-18 5.07 p.Y. 48.69 p.Y. 98% 34.79 d.p.Iss. 66 1737 97% 58%
Gathered: 2021-05-20

Table 6.4: bcrypt Libraries

Secondly, the password hashing algorithm bcrypt is considered. The libraries bcryptjs
and bcrypt can be used to implement it. Both work interchangeably by offering a func-
tion to generate a salt with a given amount of salt rounds and a function that hashes
the password with the given salt. Both use a default value of ten rounds. However,
based on the metric as seen in Table 6.4, the library bcrypt seems to be better maintained
and is also used more often as dependency making it the preferable choice.
The library pbkdf2 is not considered, since this is the library used within the crypto
module to provide the PBKDF2 functionality.

For Spring Boot the library BouncyCastle can be used. This library will be further
evaluated in subsubsection 6.3.1.3.

Authentication

The following will display solutions from libraries to implement JWT or session cookies.

JWT:

Express can make use of the library jsonwebtoken to implement JWTs. This library was
chosen because it is often used as dependency for other libraries such as jwt, express-jwt
or passport-jwt. The library offers the methods sign and verify. These methods are
used to sign and verify a JWT given a payload, a secret or private key, options, and
a callback method. The options contain the algorithm which defaults to HS256, the
period the token is valid, and more. In case the algorithms option is not passed, the
library will search the secretOrPublicKey parameter which has to be passed to the
verify method for the strings ’BEGIN PUBLIC KEY’ or ’BEGIN RSA PUBLIC KEY’.
When these are found, the library will verify the JWT with the corresponding public
key algorithms (RS256, RS384, RS512, ES256, ES384, ES512) or RSA algorithms (RS256,
RS384, RS512). If the parameter does not contain these strings, it defaults to HMAC
algorithms (HS256, HS384, HS512). The library then searches the algorithm given
through the alg key within the list. Hence, the attacks that function through forging a
token with a manipulated algorithm as described in subsection 2.2.1, are not possible.
None of the other concerns mentioned in the literature are solved through this library.
However, again most of the concerns are related to the design of JWTs and therefore

69



6 Mapping of Vulnerabilities to Solutions

not solvable.

For Spring Boot, multiple libraries can be chosen. Firstly, the library io.jsonwebtoken
implements JWTs for Java and Android. In order to deal with the none algorithm
vulnerability, the library completely disallows the usage of unsigned JWTs by throwing
an UnsupportedJwtException in that case. Furthermore, it is not possible to tamper
with the algorithm stated in the alg key, since the library only verifies a JWT with
a predefined key. The key defines the algorithm used when signing or verifying the
token. In case the passed algorithm and the one defined within the code do not match,
the library throws a InvalidKeyException. Furthermore, the library also helps with
choosing a correct key length by throwing a WeakKeyException and referring to RFC
7518 within the error message. The other concerns that were mentioned in the literature
are not covered.
Furthermore, a developer can choose to use auth0’s implementation of JWTs with the
java-jwt library. The library is also not vulnerable to attacks in which an attacker can
manipulate the behavior by changing the alg key within the header of the JWT. When
validating a JWT with this library, the developer has to define the algorithm used for
the verification. Therefore, if a manipulated JWT with none as value for the alg key
is tried to be verified using an HMAC algorithm, it will not succeed and result in
a AlgorithmMismatchException. In contrast to the previous library, the length of an
HMAC key does not need to comply with the standards defined in RFC7518. However,
the documentation of the library emphasizes its importance. This library does also not
cover the other concerns of the literature.

Session Cookies:

For Express, the library express-session offers an implementation of session cookies. The
name that is used by default is connect.sid which is a better name than Express’ native
solution’s default name, but not as generic as it should be. It is still possible for an
attacker to identify the used library. Furthermore, the library sets Path to /, HttpOnly
to true, Secure to false, and maxAge to null by default. In contrast to Express’ native
solution, the Secure attribute is not set dynamically whether HTTPS is used or not.
However, the documentation emphasizes that setting Secure to true is recommended.
The maxAge of the cookie makes the session to not be persisted throughout closing the
browser, which is the most secure option. For the generation of the session identifier,
the library uid-safe is used which creates secure UIDs. Its length is 24 bytes and there-
fore sufficient according to the literature. Additionally, the library also offers different
methods for session management. A session can be regenerated (create new session id
and session instance), destroyed, reloaded (reloaded from the session storage), saved

70



6 Mapping of Vulnerabilities to Solutions

(saves session into the storage), or touched (updates the maxAge attribute, which is
also done automatically). Furthermore, this library offers the possibility to connect the
session storage to a DBMS such as MySQL or MongoDB. Finally, no session fixation
prevention is implemented per default. The regenerate method can be used for it,
which however needs to be called once a user authenticates and therefore does not offer
security by default.

No further libraries were found for Spring Boot.

6.2.2 Broken Access Control
Solutions for general authorization and CORS are described in the following.

6.2.2.1 Expert Interviews

In question one, Expert 1 to 3 all mentioned that authentication should be implemented
through a library if one exists. Expert 4 pointed out that it is depending on the context
whether he chooses a library or not. Expert 2 recommends using annotations when
implementing authorization in Java applications.
Further aspects that Expert 1 mentioned were that manual testing is very important. In
addition, Expert 4 referred again to ’the human’ as a common point of failure.

6.2.2.2 Frameworks

In the following paragraphs, framework-based solutions for authorization and CORS
are evaluated.

Authorization

In Express no native solution for authorization is implemented. The implementation of
such a mechanism is therefore highly dependent on the engineering capabilities of the
software developers. However, a possible implementation of authentication could make
use of Express’ middleware functionality. Using the middleware, the authorization
can take place in one centralized location within the application and then be used at
every endpoint. This could directly restrict access to an endpoint, in case the request
could not be authorized. In conclusion, further libraries or in-depth testing of the
authorization mechanisms should be considered.

Spring Boot offers an authorization mechanism natively with Spring Security. Through
the usage of different built-in expressions, access to certain resources can be restricted.

71



6 Mapping of Vulnerabilities to Solutions

These restrictions include the role or authority a user has. The roles can be self-defined
and offer the possibility for a hierarchy of roles and the authorities define operations
such as ’read’. These expressions can be used in different ways within Spring Security.
One way is to make use of the annotations @PreAuthorize and @PostAuthorize, which
were highlighted by Expert 2, that are placed before the to be restricted methods. The
expressions mentioned above can then be passed to the annotations to implement the
level of restriction that is needed. The annotation @PreAuthorize("hasRole(’USER’)")
would restrict the underlying resource to everyone who is within the group USER. Fur-
thermore, this functionality can also be implemented through the configure method
within the WebSecurityConfigurerAdapter class. In contrast to the configure method
seen in subsubsection 6.2.1.2 that is used to implement authentication, this one is passed
a HttpSecurity object. For this object different antMatchers can be defined that corre-
sponds to a certain URL. This URL definition can then be restricted through expressions.
In order to restrict the access of a certain resource (URL) to clients with the USER
role the following code can be used: antMatchers("/books/**").hasRole("USER").
Therefore, the resource books with all underlying URLs is restricted. [143]

Cross-Origin Resource Sharing (CORS)

Express offers the cors middleware library that is maintained by Express. It can be
used by either adding it to the middleware, which makes the whole server accessible
through the defined origins or only within a specific route.
As already described in the literature, the developers are responsible for securely defin-
ing CORS. Thus, this library is not adding any security but only giving the possibility
to setting CORS conveniently.

Similar to Express, Spring Boot is natively providing a convenient implementation of
CORS. The annotation @CrossOrigin(origins = "http://myApp:8080") makes cross-
origin request from the defined origins possible. Furthermore, if Spring Security is
used, the global usage of CORS can be defined within the configure method of the
WebSecurityConfigurerAdapter class.
As written above, no security is provided through the usage of this functionality.

6.2.2.3 Libraries

Library-based solutions for authorization and CORS are described in the following
discussion.

72



6 Mapping of Vulnerabilities to Solutions

Authorization

In Express a developer can choose multiple libraries to handle authorization. However,
if the popularity with these libraries is compared to other libraries, it seems like this
kind of functionality is often implemented without usage of an additional library, in
contrast to what was stated by the experts. The most popular authorization library is
the library accesscontrol. It implements role-based access control in combination with
attribute-based access control. This means a user can define a role that can create,
read, update or delete a certain resource. Similarly, the library offers a method to
check whether a role can access the resource in the way it wants to (for example read
a resource). The library rbac works in the same manner as accesscontrol. Furthermore,
casbin can be used to implement authentication. It functions by reading a model and
a policy configuration file. Depending on how these are configured different autho-
rization models can be defined such as role-based or attribute-based access control.
Finally, the library abac exists that seems to be deprecated and not used, therefore it is
not considered.
All of these libraries have in common to only support the developer in defining roles
and permissions for users and resources. This can of course be helpful, however, it does
not protect developers in any way from allowing unauthorized access. The defined roles
can be imprecise and allow room for attackers to exploit the application. Thus, the web
application should be evaluated for errors within the implementation of authorization.

Libraries that do authorization for Spring Boot could not be found while researching.

Cross-Origin Resource Sharing (CORS)

Further libraries exist for Express that help to deal with CORS. These libraries are
simple-cors, yeps-cors, cross-origin and more. However, due to their very low popularity,
they are not considered.

Spring Boot’s implementation of CORS seems to be the standard when implementing
the CORS functionality and therefore no further libraries could be found.

6.2.3 Cross-Site Request Forgery
Frameworks and libraries are evaluated in the following by reviewing the corresponding
CSRF implementation.

73



6 Mapping of Vulnerabilities to Solutions

6.2.3.1 Frameworks

Angular is the only client-side web framework that offers support for handling CSRF
tokens. Its HTTPClient has a built-in CSRF protection by supporting the token patterns.
The interceptor of Angular searches the cookies for an XSRF-TOKEN and automatically
sets it to the X-XSRF-TOKEN header. In order to change these default names, one can
pass options to the HTTPClientXsrfModule.withOptions method. [130]

In Express the official Node.js CSRF library csurf can be used which uses the li-
brary csrf as dependency. Since it is maintained by the Expressjs team, it is considered
framework-native. csurf is using the secret and token generation functionality of csrf.
The offered approach is using HMAC functions but does not fully implement the
HMAC Based Token Pattern. Instead of hashing the session ID and a timestamp,
the token consists of the following string: salt + ’-’ + hash(salt + ’-’ + secret).
The salt is created beforehand by the rndm library. As stated in its documentation,
these salts are not created cryptographically safe. The hashing is done with the SHA1
function in combination with further configurations. When verifying the token, the salt
is removed from the token and used to re-generate the token. Both tokens are then
compared using the tsscmp library to avoid timing attacks. This implementation can
either be used with the express-session library, if storing these tokens with the session is
chosen, or with the Double Submit Cookie method resulting in a separate cookie for
the CSRF token. This choice is made by passing the cookie attribute as options to the
csurf library. Also, options to enhance the security of the cookies as mentioned in the
literature are available, but not set to secure values by default. Both attributes Secure
and SameSite default to false. In addition, to find the token, the library will search
different locations such as the request body and query as well as under certain header
names.
In conclusion, Express’ CSRF token creation and verification approach does not match
completely with what is described in the literature since, instead of session information
and a timestamp, only a salt and the secret are required to verify a token. Furthermore,
none of the above-mentioned security enhancements are enabled by default such as
SameSite or Secure. Therefore, a correct configuration of the cookies and a further
evaluation of the security of the verification process is required.

Spring Boot has built-in support for CSRF tokens with Spring Security, by enabling
the usage of CSRF tokens by default. This makes it very easy to use and adds security
by default. The used pattern for token handling is the Synchronizer Token Pattern,
which is implemented as described in the literature. The token is generated similar
to the session ID using the randomUUID method. In addition, the cookie is enhanced

74



6 Mapping of Vulnerabilities to Solutions

with the Secure and the Max-Age attributes. SameSite is not set. The tokens are then
compared using the equalsConstantTime method from the CsrfFilter class which
provides a constant-time comparison to avoid timing attacks. If these two tokens match,
the FilterChain is passed on and if not, the request stops. [144]

6.2.3.2 Libraries

For Express, there are many non official alternatives to csurf. The following libraries can
also be used to implement CRSF tokens: csurfer, hmac-csrf, csrf-simple-origin, express-csrf-
double-submit-cookie and csrf-guard. However, because of their generally low popularity,
these libraries are not considered.

Spring Boot can make use of OWASP’s CSRFGuard which is another implementa-
tion of CSRF tokens. However, since it seems outdated with its latest version 3.1.0
released in 2015, it was not considered in this thesis. Once version 4.0 releases, its
release date is planned to be in 2021, it could be considered as a possible alternative.

6.3 Configuration-based Vulnerabilities
Solutions for the third group of vulnerabilities can be found in the following sections.

6.3.1 Sensitive Data Exposure
The following deals with cryptography and key management. No solution for the
general management of data was found within frameworks or libraries. Code examples
for the solutions regarding cryptography were created for general JavaScript12 and
Spring Boot13.

6.3.1.1 Expert Interviews

In order to make data in transmit confidential (question one), the experts agree on
using encryption through HTTPS. Furthermore, as mentioned by Expert 2, no sensitive
information should be written into the URL. Expert 3 emphasizes that also the use of
the correct architecture is important. However, since this is more fitting for the second
question, this answer will be covered there. Expert 4 says to enhance the security even
more a VPN can be used.

12https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/cryptography.js
13https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/

java/main/demo/WebSecurityConfig.java

75

https://github.com/moritzhuether/mastersthesis/blob/main/GeneralJS/cryptography.js
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/WebSecurityConfig.java
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/WebSecurityConfig.java


6 Mapping of Vulnerabilities to Solutions

In terms of where to encrypt data, Expert 2 and 3 both replied by emphasizing that the
architecture is important. Expert 3 says that, starting at the design of the data model
and also applying it to the rest of the application, a developer has to consider what
data is needed, will be sent, and who can access it. Therefore, as also stated by Expert
2, it is important to minimize the required data in the design phase. Expert 2 also
answered that passwords should be hashed, personal data should be encrypted and a
possible library for Java is BouncyCastle. On the other hand, Expert 4 relies fully on the
encryption done when transmitting data.
The chosen algorithm (question three) should be within a common library (Expert 2)
and should also be secure (Expert 3). Expert 3 discouraged the usage of MD5 or Base64.
In the last question regarding further aspects of this vulnerability, Expert 2 and 4 both
mentioned again the minimization of data that is used within the system.

6.3.1.2 Frameworks

The following paragraphs highlight different solutions existing for cryptography and
key management which are implemented through framework-native functionalities.

Cryptography

The Node.js crypto module, which makes use of OpenSSL, can be used to encrypt data.
By calling the method createCipheriv of the module, a new cipher can be created.
The cipher takes an algorithm that is used for the encryption, a key that is used by the
algorithm, and the initialization vector. To decrypt the data again, a Decipher object
has to be created with the same parameters for algorithm, key, and initialization vector
using the createDecyipheriv method. Both objects provide an update and a final
method that, if used in combination, will produce the en- or decrypted data. For the
creation of Cipher or Decipher objects no defaults are set. Not providing the above
described parameters will result in an error. Thus, the security of cryptography is
highly depending on the choice a developer makes. The example that is shown in the
documentation is however aligning partially with the literature. It uses AES-192 with
the CBC mode (which should be changed to GCM or CCM) and generates both the key
and the IV randomly with cryptographically secure functions.

In Spring Boot a developer can use classes provided by Spring Security to already
receive a default configuration. These classes are Encryptors and Decryptors and
they can be used for symmetric encryption. These classes offer a rather simple API
for the initiation of either byte or text en- or decryptors. The ByteEncryptor class,
which returns only bytes, can be created by calling the methods standard or stronger.
Both methods require a password and a salt to be passed to them. If the standard

76



6 Mapping of Vulnerabilities to Solutions

method is chosen, the encryption is done using 256 bit AES encryption. The secret
key is automatically created through PBKDF2 using the given password and the salt.
Furthermore, it uses a 16 bytes long initialization vector that is created with Java’s
secureRandom method. By default, it uses the CBC mode, which is only recommended
with additional authentication [72]. Thus, the stronger method should be chosen. It
also encrypts with 256 bit AES encryption but using the GCM mode. This is the only
distinction from the standard method. Furthermore, in order to create a TextEncryptor
object, that returns strings when en- or decrypting, the methods text, which is the
equivalent of standard, and deluxe with is the equivalent of stronger, can be used.
Once the objects are defined, their encrypt and decrypt methods can be called. Within
these methods, a Cipher object is created with the AES instance, the operation mode
and the data is en- or decrypted with the doFinal method.
The Cipher class can also be used directly at a lower level. This is less foolproof since
no defaults are used in that case.

Key Management

Express has no native functionality to manage keys.

Spring Boot on the other hand offers Spring Vault which provides an interface to
HashiCorp’s Vault. This is a secret management tool that helps to store tokens, secrets,
or cryptographic keys. In addition, it implements the key management lifecycle with
making it possible to create, rotate and revoke keys. Spring Vault gives the possibility
to easily access Vault by defining a VaultTemplate that connects to the URL Vault is
running at. The template can then be used to revive secrets stored in the Vault with the
read method.

6.3.1.3 Libraries

Solutions for cryptography and key management, which can be found in libraries, are
described in the following.

Cryptography

In the Node.js environment, the library crypto-js can be used. In contrast to the crypto
module, it implements default configurations that are easy to use. For example the
method call CryptoJS.AES.encrypt("Message", key) will encrypt the message with
the AES algorithm. The concrete type of the AES algorithm is chosen depending on
the key length that is passed (a 256 bits long key will result in AES-256). In case a
passphrase is used, which is also supported, a 256 bits key will be generated. A 16

77



6 Mapping of Vulnerabilities to Solutions

bytes long initialization vector is created. The default mode is CBC, which requires
further authentication, and the modes recommended by [72], GCM, and CCM, are not
implemented.

The Java Cryptography Extension (JCE) makes it possible to use further providers
for cryptographic ciphers. The most common example for such a provider is Bouncy-
Castle. By adding this library to the providers, its ciphers, that exceed the ones native to
the JCE, can be chosen. However, it can only be used to increase the customizability of
Spring Security’s solution and does not offer a default configuration for the encryption.

Key Management

In Express also an interface for HashiCorp’s Vault is existing. The library called node-
vault does, just as Spring Vault, offer an interface to write, read and delete secrets in
the vault.

No further libraries were found for Spring Boot.

6.3.2 Security Misconfiguration
As the literature already described, the process of security hardening is often combined
with the build process of the web application. Therefore, only solutions for HTTP
headers and error handling are analyzed in the following.

6.3.2.1 Expert Interviews

In question one, the experts all said that no library exists to do configuration. However,
Expert 3 referred to linters and other tools to check configuration files, which could not
be found while researching. Expert 4 puts his trust into configuration recommendations
that are found on the internet.
For error handling, question two, the experts also agree that no library exists that
implements the functionality of error handling holistically. As stated by Expert 3,
engineering is needed to do error handling. Experts 1, 2, and 4 pointed out that
setting the environment from ’Debugging’ to ’Production’ is important. In terms of
implementation suggestions, Expert 2 suggested implementing one error handler that
catches the whole application, as also found in the literature.
The HTTP headers, that were covered in question three, were generally important
to the experts. As Expert 4 stated: "all of them are important". Concrete exam-
ples were mentioned by Expert 2: CSP, cache-control, Strict-Transport-Security,
X-Frame-Options and the ’nosniffing’ header called X-Content-Type-Options. Expert

78



6 Mapping of Vulnerabilities to Solutions

3 adds the usage of CSRF tokens to the list. The headers mentioned by Expert 1 are
already covered by Expert 2.
Expert 2 was able to answer further questions regarding the CSP (question four). He
recommended a whitelist approach that only considers what is actually used and
therefore is as restricting as possible. Furthermore, the usage of Google’s CSP evaluator
was recommended. Expert 1 mentions the frame-ancestors directive to be important.
A further aspect that was mentioned by Expert 4 was that a whitelisting or ’Zero Trust’
approach should be used when configuring a web application.

6.3.2.2 Frameworks

The following will highlight different solutions of frameworks for HTTP headers and
error handling.

HTTP Header

Express does not have a native configuration of the necessary headers that were dis-
cussed in the literature. The usage of libraries should be considered.

Spring Boot, on the other hand, provides a default configuration of HTTP headers
with Spring Security. An overview of the headers it sets and how these are configured
can be seen in Table 6.5. The default configuration already offers a security baseline.
However, certain configurations should be reconsidered or are missing. First of all, the
Strict-Transport-Security does not set the preload directive. Since this directive is
mainly important for high-risk web applications it does not need to set for every config-
uration [68]. Setting the X-Frame-Options to deny is aligning with the literature and the
most secure way to configure this header. Furthermore, as described in the literature,
the usage of a CSP can add a high level of security, which is completely missing from
Spring Security’s configuration. Not setting the Referrer-Policy header means its
default is used, which is according to the literature also usable. The X-XSS-Protection
on the other hand, is not set correctly by configuring it to 1; mode=block. As described
in the literature, this value should be set to 0. Furthermore, different headers that are
concerned with caching are set natively by Spring Boot. These headers are configured
as described in the literature. Finally, missing headers can be added through the
addHeader method.
To further enhance the security of HTTP headers, the CSP should be considered since it
offers defenses against XSS and clickjacking. In addition, the incorrect configuration of
the X-XSS-Protection needs to be overwritten.

79



6 Mapping of Vulnerabilities to Solutions

Error Handling

This subsection deals with the handling of errors. Error messages, which either show
detailed information about why the error happened or even stack traces, can lead to
the leakage of information. Therefore, the following sections will cover the approaches
of error handling for the different web frameworks.
The frameworks, in general, do not offer any solution to disallow error messages with
too much information. As mentioned by Expert 3 it requires engineering to deal with
this issue. Another general approach that was emphasized by Experts 1, 2, and 4 is that
the developers should differentiate between development and production mode. The
production mode often affects the way the frameworks handle errors, which will be
described in the following.

Starting with React, a developer can use an ErrorBoundary component. This fea-
ture was introduced in React 16 and these components make use of the lifecycle method
componentDidCatch. If this method is implemented, it will catch JavaScript errors
that occur inside of child components. Thus, the error boundary needs to wrap all
components for which error handling is intended to be implemented. In case an error is
thrown, the error boundary component will catch it and offer possibilities to apply cer-
tain logic like displaying corresponding error messages. These error messages should
not contain too much information and also a default message should be implemented
if an unknown error happens. However, then a React application is created through
the create-react-app command, error messages containing stack traces will be shown
even in production. As stated in [145], disabling this is mandatory.

Vue.js is offering the possibility to define a global error handler in its configuration.
The error handling logic needs to be passed to Vue.config.errorHandler in order to
trigger it when uncaught errors appear. This configuration is also addressed if Vue.js is
run in production mode and an error occurs. Another option is to use the lifecycle hook
errorCaptured, which is called in the case of a captured error within child components.

Angular provides the ErrorHandler class that offers the possibility to implement a
custom error handler. This handler can be used to centralize the exception handling of
the web application. The necessary logic can be put inside of the handleError method.
In Angular, no information regarding the influence the production mode has on the
displaying of errors could be found. However, as stated in Angular’s documentation,
the code is uglified which reduces the value stack traces have for attackers by giving
functions and variables unreadable names. [146]

80



6 Mapping of Vulnerabilities to Solutions

In Express a developer can make use of the middleware. In case a function with
four parameters is passed to app.use method, Express will treat it as an error handler
since other functions have only three parameters. The fourth parameter, which is
additional to the typical res, req and next, parameters is err. It is used to pass errors
to the function. Inside of this function, the logic for error handling can be defined.
Therefore, a developer can check the type of error, its message and handle it accordingly.
To tell Express to go to the defined error handler, it is important to put the error handler
middleware lastly in the program. The method next can then be used to tell Express
that the current middleware should proceed to the next. In the case of a standard
Express application, Express will then go from the called endpoint (app.get(...)) to
the error handler. Thereby, default error messages can be defined and no stack traces
will be printed to the user. In addition, if used in production, Express’ default error
will trigger when next is used and no custom error handler is present. [147]

Spring Boot offers multiple solutions for error handling. The first approach is an error
handler at the controller level used via the @ExceptionHandler annotation. If this anno-
tation is placed before a method, this method will be called in case an error is thrown
within the controller. In addition, Spring Boot also offers the @ControllerAdvice anno-
tation for global error handlers. By adding this annotation to a class, it will become a
global event handler and a developer can implement methods with @ExceptionHandler
in order to catch certain errors. This means a developer can throw an error without
handling it and it will be caught by the class with the @ControllerAdvice annotation.
Spring Boot offers the Whitelabel Error Page which acts as a default error page in case
the error is not caught. With the configuration of server.error.include-stacktrace
and server.error.include-message a developer can configure if the stack trace or the
error message should be included. If both are disabled, the information passed to the
client is minimized.

6.3.2.3 Libraries

Library-based solutions for HTTP headers and error handling can be found in the
following paragraphs.

HTTP Header

Express recommends the usage of the library helmet as a standard configuration for
the HTTP headers. The configurations for the headers reviewed within this thesis
can be seen in Table 6.5. First of all, helmet does set the max-age directive of the
Strict-Transport-Security header to a rather low value. The browser will remember
to use HTTPS for only 180 days instead of the recommended two years. However, the

81



6 Mapping of Vulnerabilities to Solutions

set value of 15552000 seconds is close to the minimum value of 15768000 defined by
[68]. Increasing this value is recommended and adding the preload directive should
be considered. Following, the X-Frame-Options header is set to sameorigin in contrast
to the deny setting of Spring Security. As described above, if this feature is not used
setting it to deny should be considered. However, setting it to sameorigin does not
offer any security threat [148]. The CSP that is provided through helmet does not
result in any errors within the CSP evaluator proposed in [89]. The Referrer-Policy
is set to no-referrer which is the most secure way of handling this header. Moreover,
disallowing the X-XSS-Protection and setting X-Content-Type-Options to no-sniff
does align with the literature.
As seen in the table, further libraries exist, that also have the same maintainer as helmet,
that add further configurations. For dealing with caching, the nocache library can be
used that defines configurations that are aligning with the literature. Finally, the library
clearsitedata can be used to set the corresponding header to * which can be used when a
user logs out. This will delete all data stored inside of the cache, cookies, and storage.
The configurations that these libraries undertake by default are mostly covering what is
proposed in the literature and also configure them according to the recommendations
found in the literature. Therefore, a high level of security can be achieved.
In addition, the library node-guard also proposes a solution for HTTP header. Even
so, it is not defining defaults and therefore only adding a convenient way of defining
headers. It is not further evaluated.

Error Handling

In general, all Node.js-based frameworks can make use of the errors library. This library
does not offer security features but provides a convenient way to create custom errors.

For React the library react-error-boundary can be chosen. This library provides an
ErrorBoundary component which has the possibility to pass a FallbackComponent and
an onError method. Nevertheless, it makes also use of the componentDidCatch method
and therefore only offers convenience. Further libraries such as react-exception-handling,
@bentley/itwin-error-handling-react and react-handling were not considered due to their
low popularity.

In Vue.js a library called vue-error-boundary exists which implements a functionality
similar to the ErrorBoundary described in React. It makes use of Vue.js’ errorCaptured
method. Therefore, it does only implement a convenient way that uses Vue.js’ native
functions. However, since it is not maintained well with not receiving updates in the
last two years, it is recommended to use Vue.js’ implementation. The libraries vue-

82



6 Mapping of Vulnerabilities to Solutions

Header / Configuration
Express
helmet

Express
nocache

Express
clearsitedata

Spring Boot
Spring Security

HSTS
max-age=15552000;
includeSubDomains

max-age=31536000;
includeSubDomains

X-Frame-Options SAMEORIGIN deny

Content Security Policy

default-src ’self’;
base-uri ’self’;
block-all-mixed-content;
font-src ’self’ https: data:;
frame-ancestors ’self’;
img-src ’self’ data:;
object-src ’none’;
script-src ’self’;
script-src-attr ’none’;
style-src ’self’ https: ’unsafe-inline’;
upgrade-insecure-requests

Referrer-Policy no-referrer
X-XSS-Protection 0 1; mode=block

Cache-Control
no-store, no-cache,
must-revalidate,
proxy-revalidate

no-cache, no-store,
max-age=0,
must-revalidate

Expires 0 0
Pragma no-cache no-cache
X-Content-Type-Options no-sniff no-sniff
Clear-Site-Data *

Table 6.5: Overview of HTTP Header Configurations of Frameworks and Libraries

reactive-error-handler and vue-error-controller were not considered due to low popularity.

Angular does not offer any popular libraries that help to deal with errors. The libraries
that were found but not considered are: angular-invocation-handler, @btapai/ng-error-
handler and ehandler.

Libraries that could be found for Express mainly offer no additional security. The
libraries express-async-errors, express-rescue and express-safe-async offer the possibility to
asynchronously handle Express errors. The handling of the errors themselves has still
to be implemented similarly to Express’ solution. Therefore, no change in security can
be achieved.

Different libraries can be used to implement error handling in Spring Boot. The
first library is Problem developed by Zalando. It replaces errors through so-called
Problems that can be displayed to the user. A Problem is a JSON that contains data
such as title, status, details, message, and more. Different default ’advice traits’, which
are methods that have the @ExceptionHandler annotation, are built-in that can be used
to display common error messages with minimal information to the user. Through

83



6 Mapping of Vulnerabilities to Solutions

this, exceptions such as UnsuportetMediaTypeException or AccessDeniedException
can be thrown without needing any input by the developer. Thus, simplifying Spring
Boot’s native approach. Furthermore, the library errors-spring-boot-starter can be used to
enhance Spring Boot’s native error handling with different error messages and codes
by adding the @ExceptionMapping annotation. No further functionality than adding
more information to the errors is implemented through this library. Thus, not adding
further security.

6.3.3 Using Components With Known Vulnerabilities
This subsection highlights the differences of available dependency checkers.

6.3.3.1 Expert Interviews

The experts stated in question one that they mainly use npm’s built-in vulnerability
checker. Expert 2 also mentioned the usage of the OWASP Dependency-Check. Expert
4 emphasized the importance of own research and staying up to date regarding new
vulnerabilities.
Expert 2 stated to not only trust these vulnerability scanners but to also do research
in question two. Expert 3 mentioned patching the vulnerable libraries and to inform
customers about possible vulnerabilities.

6.3.3.2 Frameworks

First, there is the automatic vulnerability checker of npm the package manager of
Node.js. Therefore, these results are applicable for all frameworks that are within
the Node.js environment. This checker is either called if a new library is installed
or by writing the command npm audit. Thereby, the dependencies of the project
are sent to the selected registry and scanned for known vulnerabilities. The depen-
dencies that are checked are the following: direct dependencies, devDependencies,
bundledDependencies and optionalDependencies [149]. These dependencies are put
into a JSON object and then send to either the Bulk Advisory endpoint (primary source)
or the Quick Audit endpoint. The vulnerability database can be seen here [150]. As
stated in [151], this database is maintained mostly by volunteers. In addition, npm
audit fix offers the possibility to directly update any vulnerable dependencies if a fix
exists.

Spring Boot does not provide native functionalities to search for vulnerabilities within
the used components.

84



6 Mapping of Vulnerabilities to Solutions

6.3.3.3 Libraries

Since some scanners can find vulnerable components in both Spring Boot and Node.js,
the following paragraph will be covering both of them concurrently.
An available solution is the npm library called Snyk which works for both Node.js
and Java. In contrast to npm audit, this vulnerability database of Snyk is maintained
by a dedicated team as described in [152]. The command snyk test can be used
to find vulnerabilities and either snyk wizard or snyk protect can be used to fix
vulnerabilities. While the first one goes through every vulnerability and offers different
possibilities, the second one automatically applies patches. For all functionalities please
refer to [153]. Snyk also has an integration for Java via Gradle or Maven.
OWASP is recommending the usage of Retire.js which can for example be used in the
command line or as a browser plugin. If used via the command line, the command
retire paired with different options will check for vulnerabilities, and the browser
plugin prints out warnings to the developer console if a reference to an insecure library
is found. This scanner does not mention the sources of its vulnerabilities and is only
applicable for JavaScript. [154]
A Java-only solution is the OWASP Dependency-Check project which, as its name
already tells, is developed by the OWASP Foundation. It can be used through a
command-line interface or as a plugin in Maven. As a data source, it uses the NVD.
Further scanners exist, such as the Nexus Vulnerability Scanner of Sonatype or Gitlab’s
dependency scanner.

6.3.4 Insufficient Logging And Monitoring
Finally, solutions to log data are considered. As defined in chapter 2, monitoring is
a task that should be done through individuals, and also because only external tools
could be found to automatically monitor logs, it is not further considered. In order to
demonstrate the loggers, code examples were created for both Express14 and Spring
Boot15.

6.3.4.1 Expert Interviews

The experts answered the first question with the libraries winston, morgan and log4js.
In the second question, Expert 2 suggested doing structured logging instead of text-
based logging. Furthermore, the experts all agree on not logging any sensitive data

14https://github.com/moritzhuether/mastersthesis/tree/main/Express/
10-InsufficientLoggingAndMonitoring

15https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/
java/main/demo/Injection.java

85

https://github.com/moritzhuether/mastersthesis/tree/main/Express/10-InsufficientLoggingAndMonitoring
https://github.com/moritzhuether/mastersthesis/tree/main/Express/10-InsufficientLoggingAndMonitoring
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/Injection.java
https://github.com/moritzhuether/mastersthesis/blob/main/SpringBoot/demo/src/main/java/main/demo/Injection.java


6 Mapping of Vulnerabilities to Solutions

such as passwords or sessions.
For analysis, in question three, the experts suggested either manual analysis of the logs
or the usage of third-party software to monitor logs.
Further aspects were that these logs should be analyzed regularly (Expert 2) and that
this is especially important since systems become more and more distributed (Expert
4).

6.3.4.2 Frameworks

The following solutions for logging are divided into language- and framework-specific
solutions.

Language-Specific Solutions

JavaScript offers different functions that help to log to the console with the Console
object. It offers methods such as log, warn, error, or time that can be used to log
strings. Therefore, some levels of severity can be achieved. However, the log can
only be written in the console and not to any persistent storage. Furthermore, no
formats exist, therefore the logs have to be written in a specific syntax that has to be
defined and used throughout the whole application. This feature is rather focused
on helping developers debugging the web application than offering support for logging.

Similar to JavaScript, Java is offering the possibility to log to the console. This can be
done through the method call System.out.print() which prints the passed data to the
console. It has the same restrictions as described above and therefore should only be
used to debug the web application.
In addition, the java.util.logging.Logger class can be used to log data. It offers different
levels such as config, info, sever and more. These logs already contain the current
time and the class the log was issued from, answering the when and where question.
In addition, if for example an exception is passed to the standard log method, the
exception is logged as well, which is answering the why question. The other questions
are not answered. Furthermore, a handler can be added through the addHandler
method that enables logging to files. This handler does also accept an Formatter object,
that defines how the logs are formatted within the files. Java provides a formatter for
text, which writes the console output to a text file, or a formatter for XML content that
writes the output within an XML file.

86



6 Mapping of Vulnerabilities to Solutions

Framework-Specific Solutions

For logging, Express offers its supported library called morgan. This library helps with
logging HTTP requests by adding it to Express’ middleware. Five different types of
formats can be chosen to shape the log. The most comprehensive ones are the common
and the combined formats that are based on the Apache logging standard [155]. The
combined type extends the common type with information about the used agent (for
example the browser). The current date and time are logged in UTC (RFC 1123 format)
to cover the when question. In order to cover the where question, the URL that was
accessed is logged. The library covers the who question partially by logging the IP
address of the user doing the request. However, no user identifier is added, if no basic
authentication is used. The what question is not answered but defining the severity
of a request is hardly feasible for a library since it is highly dependent on the web
application. Furthermore, the how and why questions are also not answered. More
aspects that are logged are the response time, the bodies of the request and response,
the HTTP version and method, and the referrer information. To fill the gaps defined
above, a developer can configure the middleware as desired. Therefore, custom logic is
needed that is adapted to the web application defining data such as the severity of the
action that was carried out and the reason why this log was created. Finally, the library
offers also the possibility to log to a certain file or to use other libraries to log to for
example MongoDB with mongoose-morgan.
Express’ native logging offers a default, that is already covering most of the properties
defined in the literature. However, the data, that is highly dependent on the web
application, needs to be added through a developer. Therefore, the logging process
should be evaluated further. Another disadvantage of this native functionality is that it
has no general implementation for Node.js. This means that a logging syntax has to be
defined so that both client and server produce logs in the same format.

Spring Boot uses the spring-boot-starter-logging dependency to implement logging.
This functionality is making use of Apache Common Logging within the Simple Logging
Facade for Java (SLF4J) that ist used to access the logger. This means that the code of a
developer will access the SLF4J API that then accesses the reference implementation
that logs data based on the API calls of SLF4J. Similar to the Java-specific solution, a
Logger object is defined that is now implemented by SLF4J and can be used to trigger
the logging in the reference implementation. The default reference implementation
that is used by Spring Boot is Logback. Log4j2 is also natively supported as a reference
implementation. Since SLF4J defines what kind of data is logged both reference imple-
mentations log the following information by default: Date and time, a level of the log,
a process id, the thread name, the name of the logger to make clear in which class the

87



6 Mapping of Vulnerabilities to Solutions

log was created, and a log message. Therefore, no information is given regarding the
user causing the log. The description needs to cover information such as the action that
was done or what URL was accessed to answer more than only the when and where
questions. Furthermore, an XML file, in the case of Log4j2 a JSON or a YAML file is
also possible, can be created, which defines the pattern a log should have, where it
should be stored, and which levels should be logged. Log4j2 does also offer further
implementations such as the support for lambda expressions, asynchronous logging,
and storing logs in daily changing files.

6.3.4.3 Libraries

Node.js offers a vast assortment of different logging libraries. The most of these libraries
offer the functionality to add levels to the logs: loglevel, logging, signale and consola.
The libraries log4js, log-driver, roarr, fancy-log and pino do also log the current time,
for certain libraries also more information, per default. The libraries winston, tracer
and bunyan give the possibility to define a logging format and are therefore further
evaluated in the following. An overview about them and also the library morgan can be
seen in Table 6.6.
The first logger that is covered is a library called winston. The library defines seven
different levels to log data. Furthermore, it has built-in transports which describe the
way a log is displayed or stored. It can log data to the console, a file, send it via HTTP
(can be useful when logging on the client-side) or in a stream. Further external trans-
ports enable the connectivity to a DBMS or the daily rotation of files. Unfortunately,
the logger does not define a standard logging syntax. This means that the syntax needs
to be defined by the developer using the provided formats. This offers extremely high
customization by giving methods to define formats, combine them, display JSON or
errors, or colorize and align them.
Secondly, the library tracer will be evaluated. It provides six log levels and also the
possibility to daily log to a different file. Per default, the log includes the current time,
the level of the log, the file and location in the file, the method that caused the log,
and its message. Furthermore, a developer can customize these logs using a set of
predefined tags. Nevertheless, even if these predefined tags are used, data regarding
the user who caused the log is missing.
Finally, the library called bunyan is reviewed. It also implements six levels of logs, and
the possibility to stream certain logs to files. The logs contain the name that was passed
when creating the logger (the used class can be defined through this), the hostname,
a process ID, the level, the message, the time on which the log was issued, and the
version of the current format. The library provides the option to pass a serializer to the
logger. The serializers take a req attribute and return a log that was created out of the

88



6 Mapping of Vulnerabilities to Solutions

Library Name Down. First Rel. Last Rel. Rel. Freq. Com. Freq. Iss. Cov. Avg Iss. c. T. Contr. Dep. Qual. Pop.

winston 5,8M 2011-01-18 2020-06-23 8.02 p.Y. 130.30 p.Y. 72% 214 d.p.Iss. 310 9072 97% 81%
morgan 2,7M 2014-02-08 2020-07-12 3.56 p.Y. 51.05 p.Y. 94% 19 d.p.Iss. 20 5332 88% 69%
bunyan 1,2M 2012-02-02 2021-01-08 12.25 p.Y. 76.32 p.Y. 55% 140 d.p.Iss. 62 2197 75% 61%
tracer 58k 2012-03-02 2020-10-31 5.52 p.Y. 26.00 p.Y. 92% 127 d.p.Iss. 32 406 96% 36%
Gathered: 2021-05-22

Table 6.6: Logging Libraries

req attribute through self-implemented code. Doing that, a serializer can be defined
that adds data about the HTTP request or similar to the log. This is necessary to be
holistic in regards to the literature.
The results of the library metric (see Table 6.6) suggest to either use winston or morgan.
In case Express is used, morgan is offering a good baseline of relevant data by default.
However, winston is offering more customizability and also the possibility to use it not
only on the server-side. In general, all mentioned libraries can produce secure logs, but
depend highly on the configurations of the developers.

In Spring Boot, the library tinylog can be used instead of the native logging mech-
anisms. After adding it to the dependencies, its Logger object can be used to log data.
The library supports five different levels of severity and has different ’writers’ to write
the logs to the console, files, or database. The default format pattern that is used by
tinylog logs the following information: the current date, the thread that created the
log, the class, and method, the level of severity, and its message. Similar to tracer, a
list of predefined tags are available to define a custom format pattern but they also
do not include information about the user causing the log, or any other HTTP-related
information.

89



7 Evaluation of Automated Tools

Finally, the results of the expert interviews regarding tools and processes are presented
and automated tools, that were disclosed within the literature and the interviews, are
analyzed in the following sections.

7.1 Expert Interviews
The second group of interviews was concerned with tools and processes that are in-
cluded in the software development process.
The first block of the questionnaire was asking questions targeting the usage of tools.
All of the experts named the SAST tool Sonarqube that is used in almost every project
they encounter. Experts 7 and 8 both emphasized that it is "state of the art" to include
the tool in projects. Further tools that could be gathered are PDM, which is a static
code analyzer, Firebuck, which is a commercial quality assurance testing tool, and
tools concerned with licensing. They are called Fossa and Whitesource and are only
commercially available. Moreover, experts 2 and 4 also mentioned CodeQL in Github
and therefore Looks Good To Me (LGTM), which is used by Github. Furthermore, the
OWASP Dependency-Check was mentioned multiple times and Expert 7 mentioned
Defect Dojo which is no scanning but a vulnerability management tool. Finally, Expert
2 mentioned the static analysis tool Find Security Bugs which is only usable for Java.
All of the gathered tools are SAST tools that are placed within the continuous integra-
tion or deployment pipeline of a project and help to find rather simple and well-known
vulnerabilities (Expert 4 and 5). They can also be included in pull requests which
only succeed if no vulnerabilities were found (Expert 5). The identified advantages are
that it saves time and cost (Expert 6 and 2), it is automated (Expert 2) and it helps to
improve security and quality (Expert 8). The disadvantage that comes with the usage
of such tools is that the rules define the results (Expert 2 and 8). Furthermore, the false
positives and warnings that were identified as a problem beforehand in the literature of
SAST tools can lead to the "Manager Problem" as described by Expert 6. This problem
describes that managers, who do not fully understand the issues, enforce that every
issue is to be solved regardless of its importance, costing money and time. In addition,
as described by Expert 2, too many issues can lead to developers simply marking them

90



7 Evaluation of Automated Tools

as fixed without evaluating them further.
The individuals, who are responsible for the introduction and correct usage of these
tools, are often provided by the consulted company to ensure the companies security
standards (Expert 5, 6, 7, and 8). Expert 8 stated the existence of team members with a
pure focus on security when working for one specific client. These persons are called
’Security Matters Experts’ and deal with anything related to security within a project.
Expert 5 and 7 both stated that the architect has the responsibility for such tools. Finally,
the answers indicate that often only the development team is responsible for addressing
the issues found through the provided tools.

The majority of the experts mentioned that code reviews and penetration tests were
performed (Expert 2, 5, 6, and 8). While code reviews are often done by team internal
developers through for example pull requests or pair programming, which was also
described as the "Four-Eye Principle", the penetration tests are mostly provided by
external service providers. However, code reviews can also be carried out by external
developers as described by Expert 8. This process is executed for every line of code
that is written (Expert 5, 6, and 8). Expert 6 stated that the penetration tests are carried
out every six months or before the release of new features. Moreover, most experts that
mentioned code reviews seemed rather positive to find most of the common mistakes
through this second glance. Both Expert 5 and 6 described code reviews as the first
level of security enhancement and penetration tests as a second level.
In general, the results of these processes can lead to a release being delayed. This
decision is made by the client the software is developed for, the leading architect, and
the development team. Expert 5 also mentioned a quality gate that is provided through
Sonarqube that determines whether the deployment continues or not. Expert 8 again
mentioned the ’Security Matters Experts’ to be responsible for these processes.
To conclude, one can say that within the industry, code is reviewed at least twice, by
the person who wrote it and an additional individual and that penetration tests are
carried out to make sure the software is secure. The code reviews are most often done
through the team or the architect and individuals with pure security roles can only be
found rarely.

7.2 Automated Tools
Many different tools can be found that support recognizing vulnerabilities within web
applications. NIST and OWASP both offer lists for different SAST tools [156], [157].
OWASP also has a list for DAST tools [103]. Even so, most of these tools are only com-
mercially available and therefore not accessible within this thesis. Hence, only publicly

91



7 Evaluation of Automated Tools

available tools will be evaluated. Evolved from the results of the expert interviews,
the following decisions were made. Since only SAST tools were used to ensure code
security, the focus will be put on those. DAST tools were not mentioned throughout
the interviews, which is most likely because of the high level of configuration that
is necessary for an appropriate test result [158]. This was also approved by Expert 2
during the interview. In particular, the tools that were mentioned the most, which are
Sonarqube, which was also declared state of the art, and also LGTM will be reviewed
more in detail.

7.2.1 Sonarqube
This subsection is concerned with the SAST tool Sonarqube, which helps to provide
code quality as well as code security. In the beginning, general information will be
provided and then its constraints will be evaluated.

7.2.1.1 General Information

Sonarqube is a SAST tool that was developed by SonaSource with its current version
8.7.1 being released in March of 2020. It evaluates the source code against a predefined
set of rules. Doing so, it can detect bugs, vulnerabilities and code smells within the
code. This tool can for example be included in the build process, or through SonarLint
within the IDE, and hence works automated. It can be used to either evaluate the whole
project or single pull requests. The rules that Sonarqube defines by default consist
of different attributes. First of all, the language this rule applies to and its type is
defined. The types can be bug, vulnerability, code smell, or security hotspot and will be
evaluated further in the following paragraph. Tags can be added for more information.
The rules originate from a repository, which is SonarQube per default, and have a
certain severity. The severity of a rule is determined by the impact that it has on the
system and the likelihood of it appearing. It ranges from minor with low impact and
likelihood to blocker. The status of the rule defines if it is deprecated, in beta, or ready
to use and the availability date describes the date when the rule was added. Finally, the
template of the rule exists that can be adapted for custom rules and the quality profile
that the rule is assigned to is stated.
Furthermore, Sonarqube offers quality gates, which were for example used by Expert 5,
to stop the build process or pull requests in case certain thresholds are exceeded. By
default, the built-on Sonar way quality gate is used. The conditions the default quality
gate provides can be seen in Figure 7.1. The coverage defines the portion of code that
is covered by tests and duplicate lines define how often duplicated code is present.
The next four conditions are related to the different types of rules that were described

92



7 Evaluation of Automated Tools

Figure 7.1: Sonarqube Default Quality Gate

earlier. For a detailed insight on how the ratings that are described in the following are
calculated, please see [159]. The maintainability rating is calculated from the number
of rules that recognize a code smell within the code. Code smells are for example code
that is commented out, unnecessary semicolons in JavaScript, or classes that implement
Serializable in Java that do not contain a serialVersionUID. For Java projects, there
are 398 and for JavaScript 141 rules that recognize code smells. Moreover, the reliability
rating is calculated through the presence and the severity of bugs. These bugs for
example include the failure of tests or the usage of non-existing operators. For Java 155
rules are available and for JavaScript 52. Finally, the two security-related rule types,
security hotspot and vulnerability, are considered. For the former, all found security
hotspots, which are code blocks that are likely to have an impact on security, need to
be reviewed. Figure 7.2 displays an example for such a process. The highlighted code
requires to be reviewed and its status must be set to either fixed or safe. In contrast,
the security rating is depending on the rules of type vulnerability. These include the
for example the robustness of the used cipher algorithms or signing JWTs with secure
algorithms. For Java 42 rules of type vulnerability exist and for Java only 14. The
default security-related rules will be further evaluated in the following.

7.2.1.2 Evaluation

In order to evaluate the security-related rules that Sonarqube proposes, the rules them-
selves as well as their proposed security advices are compared against what is found
within the literature. In addition, the code examples described in section 4.2 were
used to gather further insights for certain vulnerabilities. In the evaluation process, the
different rules assigned to a vulnerability will be reviewed.

For both Java and JavaScript, a general rule called ’Formatting SQL queries is security-
sensitive (S2077) is available that searches for the insecure creation of queries or

93



7 Evaluation of Automated Tools

Figure 7.2: Sonarqube Security Hotspot Example

commands. However, the rules do not find all vulnerable code in Java. Only the
insecure implementation of JDBC using only Java was recognized in the code examples
from Sonarqube. It does not find the insecure implementation of Spring’s JDBC im-
plementation and its JdbcTemplates class. In JavaScript, the insecure query, in which
none of the mysql native security mechanisms is used, resulted in a security hotspot.
The insecure usage of the sequelize libraries does however not lead to any security issues
in Sonarqube.
For the vulnerability Broken Authentication multiple rules exist which align with the
literature. First of all, for both Java and JavaScript a rule exists, which deals with session
fixation by stating that a new session should be created when a user logs in (S5876).
In Java, the rule matches with the solutions in chapter 6, but in JavaScript, only an
example based on the library passport is considered. Thus, no security issue was found
even if the regenerate method is not called after a user authenticates. Furthermore,
both languages have a rule which checks whether hard-coded credentials are present
(S2068). In Java, a further rule can be found, which enforces the usage of a secure
password which is however only triggered if the password is left empty (java:S2115).
Finally, another rule only applicable for Java is concerned with the usage of a password
encryptor (java:S5344). In particular, the password encryptors bcrypt, PBDKDF2, and
argon2 that are recommended in the literature. The other aspects covered in this thesis,
like general authentication or password policies are not covered by the rules.

94



7 Evaluation of Automated Tools

For Sensitive Data Exposure in total 28 rules exists. Rules that are related to cryptog-
raphy are the following: robustness of cipher algorithms (S5547) and cryptographic
keys (S4426), the usage of secure encryption modes and padding schemes (S5542), the
inclusion of unpredictable salts in hash functions (S2053), the usage of pseudo-random
number generators (S2245), signing JWTs with strong cipher algorithms (S5659) and
finally the usage of non-standard cryptographic algorithms (S2257) or weak hashing
algorithms (S4790). All of these align with what is proposed in the literature. Further-
more, cookies should be enhanced with the Secure flag (S2092) and in JavaScript, the
usage of the no-referrer policy is recommended whose example is displayed with the
library helmet (S5736). The latter does not match completely with the literature but the
rule proposes the usage of the most secure configuration possible. Further rules exist,
but they do not cover contents within this thesis and are therefore not evaluated.
For the XXE vulnerabilities, the general rule exists that the XML parsers should not con-
sider external entities (S2755). It provides different examples of parser configurations.
Most of the rules for the Broken Access Control vulnerability are rather general. Rel-
evant rules could only be found for Java. These rules disallow the usage of both
safe and unsafe HTTP methods (S3752) which enforces that only one HTTP method
is allowed and also emphasizes the implementation of strong decisions (S5808) by
defining restrictions to custom vote and hasPermission methods.
The rules that belong to the Security Misconfiguration vulnerability are highly over-
lapping with Sensitive Data Exposure. Therefore only the non-overlapping rules will
be evaluated. The first rule for Java is that the URLs within HttpSecurity should be
ordered in a way that URLs containing /** should be put lastly (java:S4601). This rule
should rather be positioned in the Broken Access Control vulnerability. Furthermore,
the initialization vectors for the chaining of cipher blocks should be unpredictable
(java:S3329) which is according to the literature but should rather be positioned in
Sensitive Data Exposure. Finally, some rules are applicable for both Java and JavaScript.
The first rule makes sure that CSRF tokens are used (S4502). In Java, the code example
for the compliant solution is incorrect because it shows Spring’s default CSRF tokens
being disabled. In JavaScript, the guidance is given based on the csruf library and
makes sure the library is used correctly. In the context of this thesis, the rule should
be assigned to the CSRF vulnerability. Moreover, the X-Powered-By header should be
disabled in both languages (S5689). For JavaScript, the solution provides guidance
for the library helmet which was proposed in the solutions of this thesis. The final
common rule is concerned with CORS, by disallowing it to be set too permissive. In the
code examples, the code app.use(cors()) did for example already result in a security
hotspot, reducing the possibility that an inexperienced developer is using the cors library
without being aware of the security concerns. On the other hand, further rules only for
JavaScript exist. These are related to HTTP headers like the X-Content-Type-Options

95



7 Evaluation of Automated Tools

which must be set to noSniff (javascript:S5734) and the CSP needs to be set and contain
the frame-ancestors directive (javascript:S5728 and javascript:S5732). Both proposed
solutions by Sonarqube make again use of helmet and are thus as described in the
solutions. Further rules exist but are not evaluated because they do not align with the
topics covered in the thesis.
In XSS the rules do not result in a secure solution. First, the HttpOnly flag of the cookies
should be set to protect them from XSS attacks (S3330). The second rule is concerned
with the disabling of automatic escaping of certain template engines (S5247). This rule
does not consider any of the nowadays commonly used web frameworks like React,
Vue.js, or Angular. Thus, if these are chosen as the client-side framework and any of
the insecure methods that these provide are used, Sonarqube will not highlight their
security concerns. Also, for example the sanitization of server output is not considered
within the rule set.
The three rules which can are applicable for the Insecure Deserialization vulnerability
do not describe a general insecure deserialization process. They only describe specific
use cases with the jackson library or using LDAP. A general rule could for example
search for the readObject method inside of Java code.
These rather specific rules are also used in the vulnerability Using Components with
Known Vulnerabilities, evaluating the insecure creation of temporary files and the
configuration of OpenSAML2.
For Insufficient Logging and Monitoring also only Java rules are available. This rule
(java:S4792) is applicable for the most common logger in Java: log4j, java.util.logger and
logback. This rule evaluates whether debugging logs are logged, data is only stored
locally or the logging mode is chosen too restrictive so that too much information is
filtered out.
The DoS vulnerability is covered by restricting the length of content that can be sent
in a request (javascript:S5693) and through the restriction of slow regular expressions
(java:S5852).
The other vulnerabilities were either already covered within the vulnerabilities above
or are not provided with rules.

7.2.2 LGTM
In the following general information about LGTM will be provided and also its built-in
constraints for Java and JavaScript projects will be evaluated.

96



7 Evaluation of Automated Tools

7.2.2.1 General Information

LGTM is a SAST tool that was developed by Semmle and is nowadays also integrated
into Github. Its current version, 1.27.0, was released in March of 2020. While being only
commercially available if it is used for private or commercial repositories, the website
lgtm.com provides free analyses of open source or public repositories. Furthermore, if
used with Github, it can be integrated into pull requests and thus be executed in an
automated manner. Its name, LGTM, is an abbreviation for ’Looks Good To Me’. The
backbone of LGTM is a technology called CodeQL that can be used to define a query for
a programming language. These queries are similar to the rules that Sonarqube defines.
They are also assigned to a query pack, which is a set of queries that belong together.
In addition, each query has an identifier, the language it can evaluate, the severity, tags,
and, which is an addition to Sonarqube’s rules, a Boolean which determines whether
the results of the queries are displayed by default or not. The query itself is made out
of QL, which is the query language used in CodeQL. An example of such a query
can be seen in Listing 7.1. The example searches for comments in JavaScript code that
start with ’TODO’. Thus, queries can be customized or developed completely from the
ground up. [160]

1 import javascript

3 from Comment c
where c.getText().regexpMatch("(?si).*\\bTODO\\b.*")

5 select c

Listing 7.1: Example of a CodeQL Query [160]

7.2.2.2 Evaluation

LGTM uses its built-in queries to evaluate the security of source code. For Java, there
are 164 different queries and for JavaScript 174 queries are evaluated. Because of this
high number of queries, only the ones related to the vulnerabilities covered in this
thesis will be evaluated. Again, these proposed constraints will be compared to the
literature and also, if applicable, validated through code examples.

Starting with Java, SQL injection related queries do also exists (java/sql-injection
and java/concatenated-sql-query) which both propose the same solution that is to use
prepared statements as also defined in the literature. Next, multiple queries can be
found that deal with cryptography. First of all, the usage of random number generators
is monitored (java/predictable-seed and java/random-used-once) which was not further

97

lgtm.com


7 Evaluation of Automated Tools

evaluated in the thesis, and the usage of cryptographically safe algorithms (java/weak-
cryptographic-algorithm and java/potentially-weak-cryptographic-algorithm) is con-
sidered which recommends the usage of at least AES-128 or RSA-2048. Even so, the
code example does not contain any information about the used cipher mode which
is declared important within the literature. Its description is emphasizing not to use
the ECB mode, which is correct, but no guidance on proper cipher modes is given. A
query being concerned with hard-coded credentials is also present (java/hardcoded-
credential-api-call). Guidance for XXE is also existing (java/xxe). In addition, a query
exists which is concerned with XSS (java/xss). The query searches for a response of a
HttpServlet that contains user input in the send HTML. Since this is not the standard
way of returning responses when using Spring Boot and also because Spring Boot, in
the context of this thesis, is primarily seen as a server-side framework, the query will
not find such vulnerabilities in Spring Boot. Furthermore, deserialization is considered
(java/unsafe-deserialization). This query implements the proposed improvements of
the corresponding Sonarqube rule that were described above. It disallows the usage
of the readObject method and suggests the usage of primitive data types. The usage
of a secure library as described in chapter 6 should also be considered. Also, a CSRF
query exists (java/spring-disabled-csrf-protection) which, in contrast to Sonarqube, has
a correct solution. The Secure setting of the cookies is enforced (java/insecure-cookie).
Furthermore, also error handling is covered by LGTM by evaluating whether stack
traces are returned as a response (java/stack-trace-exposure). Also, a queries exist
that are related to input validation. These do not apply to the context of this thesis.
The first query (java/insecure-bean-validation) disallows certain features in validators
that can lead do code execution. Further queries, that can be connected to the Input
Validation vulnerability, check for secure handling of user input in connection with
arrays (java/improper-validation-of-array-index and java/improper-validation-of-array-
construction), which is only partially relevant in the context of this thesis. Finally, a
query exists that forces user-provided redirects to be compared against a whitelist
of valid redirects (java/unvalidated-url-redirection). This is exactly as the literature
recommends.
For JavaScript, there are also queries related to the Injection vulnerability. Firstly,
SQL injections are covered, again emphasizing the usage of parameterized queries
(js/sql-injection). The query description does only contain examples for the pg (Post-
greSQL) library but it also found issues in the code examples for the mysql library.
The usage of the escape method which is provided by the mysql library was however
marked as an vulnerability even tho it has the same outcome as the usage of the
prepared statements. In addition, this vulnerability was also found if mongoose or
mongodb were used and data input was directly inserted into the query. Furthermore,
a general code injection query can be found, which highlights the problems that the

98



7 Evaluation of Automated Tools

usage of the $where operator involves. To handle the access control, the CORS query
evaluated whether a whitelist was used to allow access from another origin (js/cors-
misconfiguration-for-credentials). Furthermore, the queries regarding the safety of
the cryptographic algorithm and secure randomness also apply to JavaScript. An
XXE query exists enforces that external entities are disabled in the selected library
(js/xxe). The greatest variety of queries can be found for the XSS vulnerability. At the
beginning, for each type of XSS attack the corresponding prevention techniques are
defined in a query (js/xss-through-dom, js/stored-xss and js/reflected-xss). A general
XSS query is also present (js/xss). Further, escaping and sanitization is evaluated
by making sure that certain characters are escaped (js/incomplete-multi-character-
sanitization and js/incomplete-sanitization) and potentially evil HTML elements are
removed (js/incomplete-html-attribute-sanitization). However, during tests, none of the
insecure methods of React, Vue.js, or Angular resulted in a security warning. Insecure
deserialization is also covered (js/unsafe-deserialization) by showing an example using
the js-yaml library. Moreover, the usage of the library csurf is recommended (js/missing-
token-validation) and multiple DoS related queries exists which are concerned with rate
limiting (js/missing-rate-limiting) and the safe usage of regular expressions (js/redos
and js/regex-injection). Finally, multiple queries can be found that deal with redirection.
These include removing insecure schemes like :javascript (js/incomplete-url-scheme-
check), sanitization of an URL (js/incomplete-url-substring-sanitization) and also the
comparison of the potential redirect URL to a whitelist (js/client-side-unvalidated-url-
redirection and js/server-side-unvalidated-url-redirection).

99



8 Discussion

This chapter lists the key findings of this thesis and also the different limitations that
were faced during the research.

8.1 Key Findings
This section summarises the findings of chapter 6 and chapter 7 by going through
every vulnerability. Table 8.1 displays an overview of the key findings. The table also
displays a perceived coverage, which is represented through Harvey Balls. The coverage
is defined by the number of security-related tasks a software developer still has to
perform to make a web application secure. A mapping of the symbols and their levels
of coverage can be found in Figure 8.1. It defines the three categories ’No/minimal
Coverage’, ’Partial Coverage’ and ’Up to Full Coverage’. The first category defines that
the solutions are only of a supporting nature with the security being completely up
to the developer. The second category includes vulnerabilities whose tasks are only
covered in certain aspects. They still require the implementation or configuration of
security-related functionalities by developers to achieve complete security. The final
category declares that a vulnerability is to a high probability covered through the
proposed solutions and does not, or only to a low extend, require knowledge about the
corresponding vulnerability or its prevention techniques. These values are built on the
personal opinion of the author that formed itself through the evaluation process of the
solutions and the expert interviews.

Starting with the Injection vulnerability, one can say that the selection of frameworks
and libraries is not necessarily having an impact on security. The proposed solutions do
all offer a secure way to query data, with Express requiring an additional sanitization
library when working with MongoDB. Also, the majority of libraries do try to educate
the user of potential security concerns when using possible insecure querying methods.
These insecure ways are in most cases a method that allows direct access to the database
with SQL. Depending on the chosen interface technology when querying data with
SQL (ORMs or official libraries), the usage of an insecure query procedure is often
less likely when choosing an ORM because their general procedure does not allow the

100



8 Discussion

No/minimal
Coverage

Partial Coverage Up to Full
Coverage

Figure 8.1: Coverage Categories

direct execution of SQL commands. In contrast, the insecure query procedure of the
mysql library is not only the one described first in the documentation but is also easier
to implement than a secure solution. These differences could not be detected when
working with MongoDB and NoSQL. Nevertheless, the official libraries have a higher
coverage of constraints in Sonarqube or LGTM. Therefore, this vulnerability is coverable
if one of the described native functionalities or libraries is used in combination with a
SAST tool.

For Broken Authentication, differences in the provided security can be found. Concern-
ing the handling of passwords, within both the Java and the JavaScript environment,
implementations exist for the recommended hashing algorithms. Even so, the configu-
rations of these algorithms do not always match completely with the literature, making
them still require knowledge in the subject. The usage of bcrypt is recommended
since it is per default configured correctly, while argon2’s configuration does not match
the recommendations entirely. Through the usage of additional SAST tools, these
configurations can be further validated, covering this issue almost completely. The
password policy can be defined through libraries in both JavaScript of Spring Boot, but
they only propose a framework for setting constraints rather than a concrete secure
default implementation. Hence, zxcvbn should be chosen to restrict the usage of unsafe
passwords. However, a developer still needs to react according to the results of zxcvbn.
Thus, only partial coverage can be achieved.
The Spring Boot framework is offering a standardized way of implementing authentica-
tion procedures and extends them through native or third-party libraries. In addition,
it is also per default providing basic authentication restricting all resources. Thereby,
one can say that the general authentication process is covered if Spring Security is used.
Express, on the other hand, does not include any authentication method natively and
is solely dependent on the usage of libraries. Therefore, authentication, in general, has
to be defined by the developer, causing no coverage. All the reviewed JWT libraries
were secure according to what was found in the literature by avoiding possible attacks
through the none algorithm. Furthermore, session cookies were also implemented
securely but were lacking automated session management in Express causing only
partial coverage. Spring Boot is handling sessions almost completely automated and is

101



8 Discussion

therefore covering the vulnerability.
In conclusion, developers receive different solutions to handle authentication ade-
quately. Nevertheless, authentication is highly dependent on the underlying system
and therefore is not holistically solvable through framework-native solutions or libraries.
Thus, the vulnerability is not completely coverable but a high extend of security-related
efforts is carried out by existing solutions.

In Sensitive Data Exposure again differences in security could be determined. When it
comes to cryptography, Spring Boot is natively providing secure methods (stronger)
that are simply callable by a developer without the need for any configuration. It should
be mentioned that the method standard should only be used if further authentication
is used. In contrast, the crypto module of Node.js, which can natively be used by all
Node.js-based frameworks, is not providing a secure API. The configurations such as
the used algorithm, the salt, and the initialization vector have to be set by a developer
which can lead to security issues. Thus, the usage of the crypto-js should be used which
offers an API that is similar to Spring Boot’s standard method. These tasks are also
supported by the reviewed SAST tools through a variety of constraints. One can say
that the solutions cover this task. Furthermore, the general minimization of data that
is used by the system is a constraint, which was often emphasized by the experts,
cannot be solved through framework or library-based solutions. Hence, developers and
architects need to consider this during the design since no solutions were found to deal
with this highly on the underlying system depending task.
Moreover, key management is often abstracted through providers or third-party solu-
tions. The frameworks offer libraries to connect to these external solutions. However,
the leakage of a carelessly handled key is still possible causing the key management to
only be covered partially.
In conclusion, this vulnerability is also not covered entirely. The support in cryptogra-
phy is for all frameworks sufficient when the usage of either Sonarqube or LGTM is
considered. However, key management still requires knowledge on how to handle keys.

XXE is natively only possible in Spring Boot since JavaScript cannot process XML
without the usage of an additional library. In general, the solution is to disable external
entities which are not always configured in that way by default in either Java or libraries
for JavaScript. However, both Sonarqube and LGTM contained a constraint that deals
with this issue for the developer, supporting the coverage further.

The vulnerability Broken Access Control is not completely solvable through frame-
works or libraries. They do only offer a framework in which a developer can define
the required behavior. In the end, the developer can make use of native roles, permis-

102



8 Discussion

sion, etc. in Spring Boot and in Express through the usage of libraries, but the access
restriction needs to be implemented correspondingly to the underlying system. Thus,
no library or tool can be used to holistically implement access control. In addition, also
no constraints provided by the SAST tools were found that would help in this regard.
The CORS header can however be limited through Sonarqube and LGTM, alarming
developers about the security issues that can arise through this HTTP header. Even so,
it is not proposing a solution for each web application, making this task only covered
partially. Based on these reasons, one can say that this vulnerability is only supported
through the existing solutions but not covered.

In the Security Misconfiguration vulnerability, general security hardening was con-
sidered. Since this task is mainly handled in the build process, the frameworks and
libraries do not offer a solution. Hence, developers need to undertake the configurations
by themselves. For error handling, again all frameworks provide a solution to handle
errors in general. Even so, error messages and the logic that is needed to recover from
the error have to be provided by the developer, making this concern not covered by
existing solutions. HTTP headers were also covered. With Express’ helmet library, a
secure configuration could be achieved while Spring Boot’s default configuration is not
without flaws. The incorrect setting of the X-XSS-Protection header and the absence
of a CSP are security issues that need to be further addressed by the developer since
the SAST tools mainly cover JavaScript solutions. The vulnerability is therefore only
partially covered for Express.
Security Misconfiguration is a vulnerability with an enormous scope that goes beyond
the application. Therefore, the support for this vulnerability is, except for HTTP head-
ers, rather limited. This leads to only partial coverage.

XSS is providing different levels of security. React and Vue.js are both escaping values
in their standard data binding, making it secure to put user input inside of it. React
is going even further by renaming the innerHTML function and making it harder to
use. Angular is, except for one rather specific use case, sanitizing everything that is
bound to the DOM. From a security perspective, escaping is the preferred choice since
it completely disables HTML to be interpreted as such. However, it comes with a
limitation in functionality. If this functionality is needed (like for rich text editors) the
reviewed sanitization libraries can be used, that all use a whitelist approach which
is recommended in the literature. These libraries can also be used in Spring Boot
or Express to handle output sanitization. Even so, as already stated in the solutions,
sanitized input can be altered again or unsanitized input can get into the system. SAST
tools can be used and especially LGTM implements many queries that help to deal
with general XSS vulnerabilities. Unfortunately, none of the security concerns of the

103



8 Discussion

web frameworks is considered in the constraints. Therefore, the coverage of React and
Angular can be seen as up to complete, while the other frameworks suffer from the
mentioned disadvantages. Furthermore, the coverage of sanitizers should be further
evaluated.

The vulnerability Insecure Deserialization is mainly an issue in Java. Hence, if JavaScript-
based frameworks are chosen, this vulnerability can be neglected in most cases. In
Java, the library Apache Commons IO, or a custom implementation of the ’look-ahead’
approach should be used to implement a whitelisting of allowed classes. Consequently,
security by default is rather minimal since the outcome highly depends on the knowl-
edge of the developer. However, LGTM is offering queries for both Java and JavaScript,
which stop developers from deserializing insecurely. In conclusion, one can say that
the vulnerability is therefore only partially covered for Java. Insecure deserialization is
generally recognized by tools, but the concrete prevention measures are still developer
dependent. In case JavaScript is used, the vulnerability is covered through the usage of
JSON.

Using Components with Known Vulnerabilities is coverable through the existing
libraries. They check whether a dependency is connected to any known vulnerabilities.
Hence, it is supporting the progress of finding such issues. Since most of the found
libraries do not explicitly name their sources and the experts stated that also the re-
search of vulnerabilities is required, the coverage of the vulnerability is only partial.

For Insufficient Logging and Monitoring, the reviewed libraries offered partial coverage.
Express’ morgan library and Spring Boot’s native logger can be used to log many of
the in the literature required information. However, similar to error handling, most
libraries only propose a framework in which the developer has to enter the information
required to make the log useful. In contrast to error handling, these solutions provide
a majority of required information in their default log configuration. Furthermore, of
equal importance is the monitoring of the created logs. Which is a task that, even if it
is supported by third-party tools, still needs the attention of a person to understand
the logs and especially the severity of certain ones. Thus, one cannot say that this vul-
nerability can be fully covered by the chosen frameworks, libraries, and automated tools.

The first vulnerability not included in the OWASP list [12] is called CRSF and re-
ceives attention natively in Express and Spring Boot. While Express’ solution does not
completely align with the literature and is therefore only covering the vulnerability
partially, Spring Boot is offering an out-of-the-box solution according to the literature.
Thus, the vulnerability can be covered if Spring Boot is used.

104



8 Discussion

On the other hand, DoS is a vulnerability with greater scope. The solutions that
were found mainly focus on the limitation of accepted requests from one specific source.
For Express the safe usage of regular expressions was considered as well. Since DoS
is rather resolved on the network layer, this vulnerability only receives no to minimal
coverage.

Input Validation can be achieved through the validator library in Node.js or the spring-
boot-starter-validation of Spring Boot. Again, a framework is given to the developers by
defining methods that can be used to validate data. These methods do however need
to be used in a meaningful manner to make untrusted data valid. Additionally, SAST
tools do not offer any support. Thus, the coverage cannot be guaranteed.

Finally, for Open Redirects and Forwards, no framework or library-based solution
can be determined since the best approach is the usage of a whitelist. LGTM is pro-
viding multiple queries to evaluate whether redirects are done insecurely. Therefore,
even if a developer does not use a recommended whitelist, the SAST tool will find this
vulnerability in certain cases. Hence, one can say this vulnerability is partially covered.

8.2 Limitations
During the research, the following limitations were encountered.
Literature: The literature research of this thesis also included grey literature whose
information could not be holistic or contain errors. Furthermore, only one person
performed the literature research which can result in bias through the selected search
terms and literature in general.
Expert Interviews: The selected experts were all within one company, the msg systems
ag, and therefore the gathered insights could be biased and also one-sided. To get a
broader view, further companies working in the area of web applications or information
systems should be questioned.
Evaluation: Since the evaluation of solutions is based on the literature research and
the expert interviews, the above-described limitations also apply for the evaluation. In
particular, the searched solutions highly depend on the search strings that were chosen
and therefore offer no holistic view of all available functionalities within frameworks or
libraries that exist to deal with vulnerabilities. Further, what will also be discussed more
in the outlook, only built-in constraints from Sonarqube and LGTM were evaluated.
Finally, no commercial tools could be included in the research, thus further tools with
most likely high potential were not reviewed.

105



8 Discussion

Vulnerability Solutions Supporting SAST Tool Constraints
Perceived
Coverage

Injection

SQL Injection
Express: (mysql), (sequelize)
Spring Boot: Spring Data (JDBC)/(JPA)

Sonarqube: S2077
LGTM: sql-injection,
java/concatenated-sql-queryNoSQL Injection

Express: (mongodb), (mongoose)
Spring Boot: Spring Data MongoDB

Broken Authentication

General Authentication Spring Boot: Spring Security
Express :

Spring Boot:

Password Policy
Node.js: zxcvbn, (password-sheriff)
Spring Boot: zxcvbn4j, (Passay)

Password Hashing
Node.js: bcrypt, (argon2), (crypto module)
Spring Boot: PasswordEncoder

Sonarqube: S4790, java:S5344
LGTM: js/insufficient-password-hash

JWTs
Node.js: jsonwebtoken
Spring Boot: io.jsonwebtoken, java-jwt

Session Cookies
Express: (cookie-session), (express-session)
Spring Boot: (Default session cookies)

Sonarqube: javascript:S5876
Express :

Spring Boot:
Sensitive Data Exposure

Cryptography
Node.js: crypto-js, (crypto module)
Spring Boot: Encryptor, Decryptor

Sonarqube: S2245, S2257, S4426, S5542,
S5547, java:S3329
LGTM: weak-cryptographic-algorithm,
potentially-weak-cryptographic-algorithm

Data Management

Key Management
Node.js: (node-vault)
Spring Boot: (Spring Vault)

XXE
JavaScript: Usage of JSON
Spring Boot: (Disabling XXE in the used parser)

Sonarqube: S2755
LGTM: xxe

JavaScript:
Spring Boot:

Broken Access Control
Authorization Sonarqube: java:S5808

CORS
Sonarqube: javascript:S5122
LGTM: js/cors-misconfiguration-for-credentials

Security Misconfiguration
Security Hardening

Error Handling
General: (Frameworks for error handling)
Spring Boot: (Problem)

LGTM: stack-trace-exposure

HTTP Header
Express: helmet, no-cache
Spring Boot: (Default configuration)

Sonarqube: S5689, javascript:S5728,
javascript:S5732, javascript:S5734

XSS

React: Escaping, (Renaming of insecure function)
Vue.js: Escaping
Angular: Sanitization of HTML, URL, CSS
Node.js: (DomPurify)
Spring Boot: (Jsoup)

Sonarqube: S3330. S5247
LGTM: js/xss, js/xss-through-dom,
js/stored-xss, js/reflected-xss,
js/incomplete-multi-character-sanitization,
js/incomplete-sanitization
js/incomplete-html-attribute-sanitization

React:
Angular:
Others :

Insecure Deserialization Spring Boot: (SerialKiller) LGTM: unsafe-deserialization
JavaScript:

Spring Boot:

Using Components with
Known Vulnerabilities

Node.js: npm, Snyk, Retire.js
Spring Boot: Snyk, OWASP Dependency-Check

Insufficient Logging and Monitoring

Logging
Express: morgan
Node.js: (winston), (tracer), (bunyan)
Spring (spring-boot-starter-logging)

LGTM: js/clear-text-logging

Monitoring

CSRF
Express: csurf
Spring Boot: Native CSRF tokens

Sonarqube: S4502
LGTM: js/missing-token-validation

Express:
Spring Boot:

DoS
Express: (ratelimiter), (safe-regex)
Spring Boot: (Spring Cloud Gateway), (Bucket4j)

Sonarqube: S5693, java:S5852
LGTM: js/missing-rate-limiting,
js/redos, js/regex-injection

Input Validation
HTML5: (Form types)
Node.js: (validator)
Spring Boot: (spring-boot-starter-validation)

Open Redirects and Forwards General: WhitelistNode.js: (validator)

LGTM: js/incomplete-url-scheme-check,
js/client-side-unvalidated-url-redirection,
js/server-side-unvalidated-url-redirection,
java/unvalidated-url-redirection

If a solution is put in brackets, it only covers a part of the vulnerability or only supports the developer and engineering is still required.

Table 8.1: Overview of the Key Findings

106



9 Conclusion

In this chapter, the thesis is concluded. Firstly, the answers to the research questions
will be summarized. Secondly, an outlook for further research is given.

9.1 Summary
The following section summarizes the answers to the research questions that were given
in the main part of the thesis.

Research Question 0.1: Which vulnerabilities are relevant for web applications?
The vulnerabilities that could be identified through literature research and also expert
interviews are the following: Injection, Broken Authentication, Sensitive Data Exposure,
XML External Entities, Broken Access Control, Security Misconfiguration, Cross-Site
Scripting, Insecure Deserialization, Using Components with Known Vulnerabilities, In-
sufficient Logging and Monitoring, Cross-Site Request Forgery, Denial of Service, Input
Validation and Open Redirects and Forwards. Further vulnerabilities were gathered,
which were declared out of scope for this thesis.

Research Question 1: Which vulnerabilities are covered by framework-native functional-
ities?
First of all, Node.js in general offers solutions for cryptography with the crypto module
which needs secure configuration. Moreover, it deals with the Using Components
with Known Vulnerabilities vulnerability through the Node package manager. React,
Angular.js and Angular all three provide native solutions for the XSS vulnerability by
either escaping or sanitizing user input automatically. Angular also includes validators
that can help to deal with input validation. Express deals with logging through the
morgan library and with CSRF trough the csurf library.
Spring Boot on the other hand provides more native coverage of vulnerabilities. It has
natively supported the connection to SQL or NoSQL databases and provides partially
secure solutions for querying data. Also, cryptography is handled by Spring Boot
natively by providing a secure API. Authentication, also including password hashing,
and authorization are natively supported. HTTP headers are set partially secure and

107



9 Conclusion

logging solutions exist. Finally, DoS protections can be found to a low extend and
predefined input validators can be used.

Research Question 2: How can libraries support the coverage of the vulnerabilities?
Libraries for Node.js help to deal with injection, authentication, data encryption and
authorization, sanitization of input, finding known vulnerabilities, logging, and input
validation but do not cover these tasks completely. HTTP headers, on the other hand,
are set securely through libraries.
For Spring Boot, fewer libraries exist. These mainly support the setting of a password
policy and the implementation of authentication mechanisms such as JWT.
The results of the first two research questions show, that software engineering with se-
curity in mind is often still required to make the given solutions secure. The reason for
this is that often both, framework-native solutions and libraries, only offer supporting
features that need to be used adequately to make a web application secure.

Research Question 2.1: How can similar libraries be compared with one other?
Different characteristics of libraries were researched from literature and gathered
through expert interviews. The characteristics with the most relevance were then put
together in a metric that can be used to distinguish libraries with similar functionality.
These characteristics contain the popularity, maintenance, stability and maturity, and
also the quality of a library. Furthermore, the security-related characteristics ’Security
by Default’, ’State of the Art’, and ’Documentation’ were defined and evaluated through
expert interviews.

Research Question 3: Which tools and processes can be used to reduce vulnerabilities?
The usage of SAST tools can increase the security of a web application by enforcing
certain security rules. These can for example recognize the insecure creation of SQL
queries, the insecure sanitization of input, and much more. However, the evaluated
tools do often only propose general, but no framework-specific constraints making the
support of these tools highly dependent on the chosen technology. The built-in rules
for both Sonarqube and LGTM can be used to increase the security in a majority of
the examined vulnerabilities. However, only a few vulnerabilities can be completely
covered through them like CORS or XXE. Furthermore, DAST tools do not seem to be
used commonly nowadays and the processes that are executed are mainly code reviews
and penetration testing.

108



9 Conclusion

9.2 Outlook
This research gives an overview of existing relevant web application vulnerabilities
and how to solve their security issues through the usage of libraries, frameworks, and
automated tools. During the research, code examples were created to give a greater
understanding of the solutions. To further support developers in their choice, these
code examples could be further validated through expert opinions and also enhanced
to a completely functioning demo web application that can be used as a guideline.
Moreover, since the scope of this thesis was limited, not all aspects of every vulnerability
could be examined. In further research, these aspects should be dealt with. Especially,
vulnerabilities or subcategories of these vulnerabilities where no solution could be
found should be the focus of further research to find ways to support developers. Also,
the proposed library metric could be improved to include a single score for the level
of maintenance or a total score to improve the comparability of the metric. Further,
only the built-in constraints of the SAST tools were evaluated. Since companies can
create their own set of constraints, further research could include a questionnaire in
this direction. Finally, the evaluation of existing DAST tools and how well developers
would accept the usage of such tools should be further evaluated.

109



A Framework and Library Versions

Framework URL Version
React https://www.npmjs.com/package/react 17.0.2
Vue.js https://www.npmjs.com/package/vue 2.6.12
Angular https://www.npmjs.com/package/angular 1.8.2
Express https://www.npmjs.com/package/express 4.17.1
Spring Boot https://spring.io/projects/spring-boot 2.5.0

Table A.1: Reviewed Frameworks and their Versions

110

https://www.npmjs.com/package/react
https://www.npmjs.com/package/vue
https://www.npmjs.com/package/angular
https://www.npmjs.com/package/express
https://spring.io/projects/spring-boot


A Framework and Library Versions

Library/Dependency Language Category URL Version
mysql JS SQL Injection https://www.npmjs.com/package/mysql 2.18.1
sequelize JS SQL Injection - ORM https://www.npmjs.com/package/sequelize 6.6.2
mongodb JS NoSQL Injection https://www.npmjs.com/package/mongodb 3.6.8
mongoose JS NoSQL Injection - ORM https://www.npmjs.com/package/mongoose 5.12.11
mysql-connector-java Java SQL Injection https://mvnrepository.com/artifact/mysql/mysql-connector-java 8.0..25
spring-boot-starter-data-jdbc Java SQL Injection https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jdbc 2.5.0
spring-boot-starter-data-jpa Java SQL Injection - ORM https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jpa 2.5.0
spring-data-mongodb Java NoSQL Injection https://mvnrepository.com/artifact/org.springframework.data/spring-data-mongodb 3.2.1
cookie-session JS Session Cookies https://www.npmjs.com/package/cookie-session 1.4.0
express-session JS Session Cookies https://www.npmjs.com/package/express-session 1.17.2
password-sheriff JS Password Policy https://www.npmjs.com/package/password-sheriff 1.1.0
password-validator JS Password Policy https://www.npmjs.com/package/password-validator 5.1.1
zxcvbn JS Password Meter https://www.npmjs.com/package/zxcvbn 4.4.2

crypto JS
Cryptography /
Password Hashing

https://nodejs.org/api/crypto.html 16.2.0

argon2 JS Password Hashing https://www.npmjs.com/package/argon2 0.27.2
bcrypt JS Password Hashing https://www.npmjs.com/package/bcrypt 5.0.1
bcryptjs JS Password Hashing https://www.npmjs.com/package/bcryptjs 2.4.3
jsonwebtoken JS JWT https://www.npmjs.com/package/jsonwebtoken 8.5.1
Passay Java Password Policy https://mvnrepository.com/artifact/org.passay/passay 1.6.0
io.jsonwebtoken Java JWT https://mvnrepository.com/artifact/io.jsonwebtoken/jjwt 0.9.1
java-jwt Java JWT https://mvnrepository.com/artifact/com.auth0/java-jwt 3.16.0

Bouncycastle Java
Cryptography /
Password Hashing

https://mvnrepository.com/artifact/org.bouncycastle/bcprov-jdk15on 1.68

zxcvbn4j Java Password Meter https://mvnrepository.com/artifact/com.nulab-inc/zxcvbn 1.5.0
node-vault JS Key Management https://www.npmjs.com/package/node-vault 0.9.21
Spring Vault Java Key Management https://mvnrepository.com/artifact/org.springframework.vault/spring-vault-core 2.3.2
sax JS XML Parser https://www.npmjs.com/package/sax 1.2.4
accesscontrol JS Access Control https://www.npmjs.com/package/accesscontrol 2.2.1
rbac JS Access Control https://www.npmjs.com/package/rbac 5.0.3
casbin JS Access Control https://www.npmjs.com/package/casbin 5.7.1
cors JS Access Control https://www.npmjs.com/package/cors 2.8.5
helmet JS HTTP Headers https://www.npmjs.com/package/helmet 4.6.0
nocache JS HTTP Headers https://www.npmjs.com/package/nocache 2.1.0
clearsitedata JS HTTP Headers https://www.npmjs.com/package/clearsitedata 0.2.0
errors JS Error Handling https://www.npmjs.com/package/errors 0.3.0
react-error-boundary JS Error Handling https://www.npmjs.com/package/react-error-boundary 3.1.3
vue-error-boundary JS Error Handling https://www.npmjs.com/package/vue-error-boundary 1.0.3
Problem Java Error Handling https://mvnrepository.com/artifact/org.zalando/problem 0.26
errors-spring-boot-starter Java Error Handling https://mvnrepository.com/artifact/me.alidg/errors-spring-boot-starter 1.4.0
escape-html JS Escaping https://www.npmjs.com/package/escape-html 1.0.3
html-escaper JS Escaping https://www.npmjs.com/package/html-escaper 3.0.3
escape-goat JS Escaping https://www.npmjs.com/package/escape-goat 4.0.0
xss JS Sanitization https://www.npmjs.com/package/xss 1.0.9
dompurify JS Sanitization https://www.npmjs.com/package/dompurify 2.2.8
sanitize-html JS Sanitization https://www.npmjs.com/package/sanitize-html 2.4.0
owasp-java-encoder Java Escaping https://mvnrepository.com/artifact/org.wso2.orbit.org.owasp.encoder/encoder 1.2.0
jsoup Java Sanitization https://mvnrepository.com/artifact/org.jsoup/jsoup 1.13.1
node-serialize JS Deserialization https://www.npmjs.com/package/node-serialize 0.0.4
SerialKiller Java Deserialization https://mvnrepository.com/artifact/org.nibblesec/serialkiller 3.0
Snyk JS/Java Dependency Checker https://www.npmjs.com/package/snyk 1.606.0
Retire.js JS Dependency Checker https://retirejs.github.io/retire.js/ 3.0.0
OWASP Dependency-Check Java Dependency Checker https://owasp.org/www-project-dependency-check/ 6.1.6
morgan JS Logger https://www.npmjs.com/package/morgan 1.10.0
winston JS Logger https://www.npmjs.com/package/winston 3.3.3
tracer JS Logger https://www.npmjs.com/package/tracer 1.1.4
bunyan JS Logger https://www.npmjs.com/package/bunyan 1.8.15
spring-boot-starter-logging Java Logger https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-logging 2.5.0
tinylog Java Logger https://mvnrepository.com/artifact/org.tinylog/tinylog 1.3.6
csurf JS CSRF Token https://www.npmjs.com/package/csurf 1.11.0
CSRFGuard Java CSRF Token https://mvnrepository.com/artifact/org.owasp/csrfguard 4.0.0
body-parser JS Request Size Limiting https://www.npmjs.com/package/body-parser 1.19.0
connect-timeout JS Rate Limiting https://www.npmjs.com/package/connect-timeout 1.9.0
safe-regex JS Safe Regex Parsing https://www.npmjs.com/package/safe-regex 2.1.1
Bucket4j Java Rate Limiting https://mvnrepository.com/artifact/com.github.vladimir-bukhtoyarov/bucket4j-core 6.2.0
prop-types JS Validation https://www.npmjs.com/package/prop-types 15.7.2
express-validator JS Validation https://www.npmjs.com/package/express-validator 6.11.1
validator JS Validation https://www.npmjs.com/package/validator 13.6.0
ajv JS Scheme Validation https://www.npmjs.com/package/ajv 8.5.0
joi JS Scheme Validation https://www.npmjs.com/package/joi 17.4.0
yup JS Scheme Validation https://www.npmjs.com/package/yup 0.32.9
formik JS Validation https://www.npmjs.com/package/formik 2.2.8
airbnb-prop-types JS Validation https://www.npmjs.com/package/airbnb-prop-types 2.16.0
formsy JS Validation https://www.npmjs.com/package/formsy 0.19.2
vuelidate JS Validation https://www.npmjs.com/package/vuelidate 0.7.6
vee-validate JS Validation https://www.npmjs.com/package/vee-validate 3.4.6

Table A.2: Reviewed Libraries and their Versions

111

https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongoose
https://mvnrepository.com/artifact/mysql/mysql-connector-java
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jdbc
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jpa
https://mvnrepository.com/artifact/org.springframework.data/spring-data-mongodb
https://www.npmjs.com/package/cookie-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/password-sheriff
https://www.npmjs.com/package/password-validator
https://www.npmjs.com/package/zxcvbn
https://nodejs.org/api/crypto.html
https://www.npmjs.com/package/argon2
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcryptjs
https://www.npmjs.com/package/jsonwebtoken
https://mvnrepository.com/artifact/org.passay/passay
https://mvnrepository.com/artifact/io.jsonwebtoken/jjwt
https://mvnrepository.com/artifact/com.auth0/java-jwt
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-jdk15on
https://mvnrepository.com/artifact/com.nulab-inc/zxcvbn
https://www.npmjs.com/package/node-vault
https://mvnrepository.com/artifact/org.springframework.vault/spring-vault-core
https://www.npmjs.com/package/sax
https://www.npmjs.com/package/accesscontrol
https://www.npmjs.com/package/rbac
https://www.npmjs.com/package/casbin
https://www.npmjs.com/package/cors
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/nocache
https://www.npmjs.com/package/clearsitedata
https://www.npmjs.com/package/errors
https://www.npmjs.com/package/react-error-boundary
https://www.npmjs.com/package/vue-error-boundary
https://mvnrepository.com/artifact/org.zalando/problem
https://mvnrepository.com/artifact/me.alidg/errors-spring-boot-starter
https://www.npmjs.com/package/escape-html
https://www.npmjs.com/package/html-escaper
https://www.npmjs.com/package/escape-goat
https://www.npmjs.com/package/xss
https://www.npmjs.com/package/dompurify
https://www.npmjs.com/package/sanitize-html
https://mvnrepository.com/artifact/org.wso2.orbit.org.owasp.encoder/encoder
https://mvnrepository.com/artifact/org.jsoup/jsoup
https://www.npmjs.com/package/node-serialize
https://mvnrepository.com/artifact/org.nibblesec/serialkiller
https://www.npmjs.com/package/snyk
https://retirejs.github.io/retire.js/
https://owasp.org/www-project-dependency-check/
https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/tracer
https://www.npmjs.com/package/bunyan
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-logging
https://mvnrepository.com/artifact/org.tinylog/tinylog
https://www.npmjs.com/package/csurf
https://mvnrepository.com/artifact/org.owasp/csrfguard
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/connect-timeout
https://www.npmjs.com/package/safe-regex
https://mvnrepository.com/artifact/com.github.vladimir-bukhtoyarov/bucket4j-core
https://www.npmjs.com/package/prop-types
https://www.npmjs.com/package/express-validator
https://www.npmjs.com/package/validator
https://www.npmjs.com/package/ajv
https://www.npmjs.com/package/joi
https://www.npmjs.com/package/yup
https://www.npmjs.com/package/formik
https://www.npmjs.com/package/airbnb-prop-types
https://www.npmjs.com/package/formsy
https://www.npmjs.com/package/vuelidate
https://www.npmjs.com/package/vee-validate


B Questionnaires

B.1 Demographic
1. Bist du diese Person?
2. Wie lautet deine Berufsbezeichnung
3. Wie lange arbeitest du schon in dieser Rolle
4. Welche Berührungspunkte mit Security hast du?
5. Wie lange arbeitest du schon im Security-Bereich?

a) Welche security-relevanten Rollen hattest du bereits?

B.2 First Round of Expert Interviews
Vulnerabilities

1. Wie vertraut bist du mit den Schwachstellen von Web Applications?
2. Würdest du sagen, dass die OWASP Top 10 Most Critical Web Application

Security Risks (2017) heutzutage noch relevant sind?
3. Welche der Schwachstellen/Risiken von OWASP Top 10 sind aus deiner Sicht die

relevantesten?
4. Mit welchen Schwachstellen/Risiken außerhalb der OWASP Top 10 hast du häufig

Kontakt?

Web Frameworks

1. Wie vertraut bist du mit Javascript basierten clientseitigen Webframeworks wie
Angular, React und Vue.js?

2. Wie vertraut bist du mit Javascript basierten serverseitigen Webframeworks wie
Express?

3. Wie vertraut bist du mit Java basierten serverseitigen Webframeworks wie Spring
Boot?

4. Gibt es deiner Meinung Webframeworks die nativ mehr Schutz vor Schwach-
stellen bieten als andere?

a) Wenn ja, welche Webframeworks würdest du bevorzugen?

112



B Questionnaires

5. Vertraust du auf die Sicherheit von Webframework nativen Schutzmechanismen?

a) Validierst du, ob diese Mechanismen wirklich sicher sind?

Libraries

1. Stell dir vor, du müsstest eine sicherheitskritische Funktion implementieren und
möchtest hierfür eine Library verwenden. Deine Recherchen ergeben, dass es
mehrere Libraries gibt, welche eine ähnliche Funktion implementieren.

a) Anhand von welchen Kriterien ziehst du eine Library einer anderen vor?
b) Wie validierst du die Sicherheit dieser Libraries?

2. Ich habe folgende Kriterien erstellt, um die Sicherheit einer Library zu bewerten.

a) Wie würdest du diese einschätzen?
b) Welche Kriterien fehlen?

3. Wann verwendest du keine Library um sicherheitskritische Funktionen zu imple-
mentieren?

a) Was sind Gründe dafür in manchen Fällen keine Library zu verwenden?

Web Frameworks and Libraries

1. Injection

a) Wie vertraut bist du mit „Injection“?
b) Verwendest du die „offiziellen“ Libraries von Datenbankmanagementsyste-

men wie z.B. mysql und mongodb oder Object Relational/Document Mapper
und Query Builder?

i. Welche Library verwendest du und weshalb?
c) Meine Recherchen haben ergeben, dass solche Libraries oft einen nicht

sicheren Weg bereitstellen um Daten abzufragen wie z.B. Raw Queries in
Sequelize oder query( ‘sql query‘ ) in mysql.

i. Was tust du, um die Verwendung von solchen Abfragen zu verhindern?
ii. Verwendest du auch Source Code Analysis Tools?

d) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser
Schwachstelle gehören?

2. Broken Authentication

a) Wie vertraut bist du mit „Broken Authentication“?
b) Passwörter

i. Nutzt du Libraries um die Passwortrichtlinien festzulegen?

113



B Questionnaires

ii. Verwendest du unterschiedliche Passwort Hashing Libraries abhängig
vom Kontext?
A. Wann verwendest du Peppering?

iii. Bei dem Zugriff auf welche Funktionen ist deiner Meinung nach eine
Multifactor Authentication gerechtfertigt?

c) Authentifizierung
i. Welche Libraries nutzt du, um Authentifizierung zu implementieren?

(Token, Session Cookies, OAuth, . . . )
d) Allgemein

i. Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser
Schwachstelle gehören?

3. Sensitive Data Exposure

a) Wie vertraut bist du mit „Sensitive Data Exposure“?
b) Wie beschützt du Daten, die von Client zu Server transportiert werden?
c) An welchen Stellen verschlüsselst du Daten und mit welchem Algorithmus

bzw. mit welcher Library machst du das?
d) Gibt es Libraries, die du zum Managen von Keys verwendest?
e) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

4. Broken Access Control

a) Wie vertraut bist du mit „Broken Access Control“?
b) Nutzt du Libraries für die Implementation von Access Control?
c) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

5. Security Misconfiguration

a) Wie vertraut bist du mit „Security Misconfiguration“?
b) Konfiguration

i. Gibt es Libraries, die die Konfiguration von sicherheitsrelevanten Ein-
stellungen vereinfacht?
A. Nutzt du andere Methoden um die korrekte Konfiguration zu

garantieren?
c) Error Handling

i. Nutzt du Libraries um Fehlermeldungen mit möglichst wenig Informa-
tionen auszugeben?

d) HTTP Header

114



B Questionnaires

i. Welche HTTP Header sind deiner Meinung nach wichtig um die Sicher-
heit der Web Application zu verbessern?

ii. Meine Recherchen haben ergeben, dass die Content-Security-Policy
(CSP) sehr viel zur Sicherheit beitragen kann.
A. Welche der Directives sind deiner Meinung nach die wichtigsten?
B. Welche Directives sollte man nur mit Vorsicht verwenden?

e) Allgemein
i. Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

6. Cross-Site Scripting

a) Wie vertraut bist du mit „Cross-Site Scripting“?
b) Nutzt du die Filtermethoden von z.B. React, Vue.js und Angular um bösarti-

gen Input herauszufiltern?
i. Nutzt du zusätzlich weitere Libraries wie z.B. DOMPurify?

ii. Nutzt du hier zusätzlich noch eine Content-Security-Policy?
c) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

7. Insecure Deserialization

a) Wie vertraut bist du mit „Insecure Deserialization“?
b) Verwendest du Libraries wie SerialKiller, SWAT oder NotSoSerial ?
c) OWASP empfiehlt hier hauptsächlich Monitoring als Schutz vor unsicherer

Deserialisierung
i. Wie gehst du dagegen vor?

d) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser
Schwachstelle gehören?

8. Insufficient Logging & Monitoring

a) Wie vertraut bist du mit „Insufficient Logging & Monitoring“?
b) Nutzt du Libraries um Daten zu loggen?

i. Welche Library nutzt du und weshalb?
ii. Welche sicherheitsrelevanten Daten loggst du?

c) Wie analysiert du die Logs, um z.B. automatisierte Attacken zu identi-
fizieren?

d) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser
Schwachstelle gehören?

9. Using Components with Known Vulnerabilities

115



B Questionnaires

a) Wie vertraut bist du mit „Using Known Vulnerabilities“?
b) Nutzt du Libraries um Schwachstellen von verwendeten Komponenten zu

identifizieren?
c) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

10. XML External Entities

a) Wie vertraut bist du mit der Schwachstelle „XML External Entities“?
b) Meine Recherchen haben ergeben, dass External Entities komplett ausgeschal-

ten werden sollten.
i. Gibt es noch eine weitere Möglichkeit gegen External Entities vorzuge-

hen?
c) Gibt es weitere wichtige Aspekte, die deiner Meinung nach zu dieser

Schwachstelle gehören?

B.3 Second Round of Expert Interviews
Questions regarding used tools:

1. Welche Tools nutzt du um Schwachstellen im Code zu verhindern?

a) Sind sie automatisch ausführbar, oder müssen sie manuell gestartet werden?
b) Wo sind diese Tools positioniert?

2. Was lösen diese Tools? Wo muss man selbst noch nachschauen?

a) Was sind die Vorteile der Tools?
b) Was sind die Nachteile der Tools?

i. Wie wird mit False Positives oder zu vielen Warnings umgegangen?

3. Wer wählt die Tools aus? Wann werden sie ausgewählt?

a) Wer kümmert sich um die Verwendung der Tools?
b) Wer kümmert sich darum, dass Ergebnisse der Tools auch adressiert werden?
c) Wer ist verantwortlich das solche Tools genutzt werden?

Questions regarding used processes:

1. Gibt es noch weitere Prozesse die durchgeführt werden um die Sicherheit zu
verbessern?

a) z.B. Code Reviews, Threat Modelling, Security Stories, Threat Poker oder
manuelle/ (semi-)automatisierte Penetationtests?

116



B Questionnaires

2. Wann und von wem werden die Prozesse durchgeführt?

a) Wer hat Verantwortung für solche Prozesse?

3. Was lösen diese Prozesse? Und was nicht?

a) Welche Schwachstellen im Code erhofft ihr damit zu finden?

4. Wer entscheidet wann, dass das Sicherheitsniveau ausreichend ist um Änderungen
in Produktion zu deployen?

a) z.B. ist eine team-externe Freigabe notwendig?

117



List of Figures

4.1 Data Collection Script - Result . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Data Collection Script - State Diagram . . . . . . . . . . . . . . . . . . . . 40

7.1 Sonarqube Default Quality Gate . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Sonarqube Security Hotspot Example . . . . . . . . . . . . . . . . . . . . 94

8.1 Coverage Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

118



List of Tables

2.1 Password Policy Requirements Based on the OWASP Foundation [57] . 15

4.1 Demographics of the Interviewed Experts . . . . . . . . . . . . . . . . . . 34
4.2 Library Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Example Table of the Library Metric . . . . . . . . . . . . . . . . . . . . . 38

5.1 Vulnerability Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 MongoDB Sanitization Libraries . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 XSS-Related Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Validation Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 bcrypt Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Overview of HTTP Header Configurations of Frameworks and Libraries 83
6.6 Logging Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Overview of the Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1 Reviewed Frameworks and their Versions . . . . . . . . . . . . . . . . . . 110
A.2 Reviewed Libraries and their Versions . . . . . . . . . . . . . . . . . . . . 111

119



Bibliography

[1] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting
web application vulnerabilities,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06), IEEE, 2006, 6–pp.

[2] G. S. Leite and A. B. Albuquerque, “An Approach for Reduce Vulnerabilities in
Web Information Systems,” in Proceedings of the Computational Methods in Systems
and Software, Springer, 2018, pp. 86–99.

[3] Smith, Zhanna Malekos and Lostri Eugenia, The Hidden Costs of Cybercrime,
McAfee. [Online]. Available: https : / / www . mcafee . com / enterprise / en -
us / assets / reports / rp - hidden - costs - of - cybercrime . pdf (visited on
05/24/2021).

[4] IC3, Internet Crime Report 2020. [Online]. Available: https://www.ic3.gov/
Media/PDF/AnnualReport/2020_IC3Report.pdf (visited on 05/24/2021).

[5] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “A
systematic analysis of XSS sanitization in web application frameworks,” in
European Symposium on Research in Computer Security, Springer, 2011, pp. 150–
171.

[6] Most used web frameworks among developers worldwide, as of early 2020, 2021. [On-
line]. Available: https://www.statista.com/statistics/1124699/worldwide-
developer-survey-most-used-frameworks-web/ (visited on 05/17/2021).

[7] R. Battle and E. Benson, “Bridging the semantic web and web 2.0 with represen-
tational state transfer (rest),” Journal of Web Semantics, vol. 6, no. 1, pp. 61–69,
2008.

[8] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios, “Selecting
third-party libraries: The practitioners’ perspective,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2020, pp. 245–256.

[9] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the wheels?
An empirical study on library reuse and re-implementation,” Empirical Software
Engineering, vol. 25, no. 1, pp. 755–789, 2020.

120

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/


Bibliography

[10] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner,
“Security testing: A survey,” in Advances in Computers, vol. 101, Elsevier, 2016,
pp. 1–51.

[11] M. Howard and S. Lipner, The security development lifecycle. Microsoft Press
Redmond, 2006, vol. 8.

[12] OWASP Foundation, “OWASP Top 10 - 2017 The Ten Most Critical Web Appli-
cation Security Risks,” 2017.

[13] 2020 CWE Top 25 Most Dangerous Software Weaknesses, 2020. [Online]. Available:
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html (visited
on 03/06/2021).

[14] Positive Technologies, Web Applications vulnerabilities and threats: statistics for 2019,
2020. [Online]. Available: https://www.ptsecurity.com/ww-en/analytics/
web-vulnerabilities-2020/ (visited on 03/06/2021).

[15] A. Pano, D. Graziotin, and P. Abrahamsson, “Factors and actors leading to the
adoption of a JavaScript framework,” Empirical Software Engineering, vol. 23,
no. 6, pp. 3503–3534, 2018.

[16] F. L. De La Mora and S. Nadi, “Which library should I use?: a metric-based
comparison of software libraries,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER),
IEEE, 2018, pp. 37–40.

[17] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. S. Cruzes, “Myths and facts
about static application security testing tools: an action research at telenor
digital,” in International Conference on Agile Software Development, Springer, Cham,
2018, pp. 86–103.

[18] Web Application Security Consortium, WASC Threat Classification, 2010. [Online].
Available: http://projects.webappsec.org/f/WASC-TC-v2_0.pdf (visited on
03/06/2021).

[19] A. Hevner and S. Chatterjee, “Design science research in information systems,”
in Design research in information systems, Springer, 2010, pp. 9–22.

[20] Z. Su and G. Wassermann, “The essence of command injection attacks in web
applications,” Acm Sigplan Notices, vol. 41, no. 1, pp. 372–382, 2006.

[21] P. Kumar and R. Pateriya, “A survey on SQL injection attacks, detection and
prevention techniques,” in 2012 Third International Conference on Computing,
Communication and Networking Technologies (ICCCNT’12), IEEE, 2012, pp. 1–5.

121

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
http://projects.webappsec.org/f/WASC-TC-v2_0.pdf


Bibliography

[22] W. G. Halfond, J. Viegas, A. Orso, et al., “A classification of SQL-injection attacks
and countermeasures,” in Proceedings of the IEEE international symposium on secure
software engineering, IEEE, vol. 1, 2006, pp. 13–15.

[23] J. Clarke-Salt, SQL injection attacks and defense. Elsevier, 2009.

[24] OWASP Foundation, Injection Prevention Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_
Cheat_Sheet.html (visited on 03/12/2021).

[25] A. Ron, A. Shulman-Peleg, and A. Puzanov, “Analysis and mitigation of NoSQL
injections,” IEEE Security & Privacy, vol. 14, no. 2, pp. 30–39, 2016.

[26] A. Ron, A. Shulman-Peleg, and E. Bronshtein, “No sql, no injection? examining
nosql security,” arXiv preprint arXiv:1506.04082, 2015.

[27] OWASP Foundation, Testing for NoSQL Injection. [Online]. Available: https:
/ / owasp . org / www - project - web - security - testing - guide / latest / 4 -
Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-
Testing_for_NoSQL_Injection (visited on 04/07/2021).

[28] Operators - MongoDB Manual, 2020. [Online]. Available: https://docs.mongodb.
com/manual/reference/operator/ (visited on 03/10/2021).

[29] P. Spiegel, NoSQL Injection, OWASP Foundation, 2016. [Online]. Available: https:
//owasp.org/www-pdf-archive/GOD16-NOSQL.pdf (visited on 04/07/2021).

[30] R. Hogue, “A Guide to XML eXternal Entity Processing,” 2015.

[31] OWASP Foundation, XML External Entity Prevention Cheat Sheet. [Online]. Avail-
able: https://cheatsheetseries.owasp.org/cheatsheets/XML_External_
Entity_Prevention_Cheat_Sheet.html (visited on 04/18/2021).

[32] ——, (2020). Cross Site Scripting (XSS), [Online]. Available: https://owasp.org/
www-community/attacks/xss/ (visited on 03/06/2021).

[33] ——, XSS Filter Evasion Cheat Sheet. [Online]. Available: https://owasp.org/www-
community/xss-filter-evasion-cheatsheet (visited on 03/06/2021).

[34] Hoehrmann, The ’javascript’ resource identifier scheme, 2010. [Online]. Available:
https://tools.ietf.org/html/draft-hoehrmann-javascript-scheme-03
(visited on 03/09/2021).

[35] OWASP Foundation. (2020). Types of XSS, [Online]. Available: https://owasp.
org/www-community/Types_of_Cross-Site_Scripting (visited on 03/06/2021).

[36] ——, Cross Site Scripting Prevention Cheat Sheet. [Online]. Available: https :
/ / cheatsheetseries . owasp . org / cheatsheets / Cross _ Site _ Scripting _
Prevention_Cheat_Sheet.html (visited on 03/09/2021).

122

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://docs.mongodb.com/manual/reference/operator/
https://docs.mongodb.com/manual/reference/operator/
https://owasp.org/www-pdf-archive/GOD16-NOSQL.pdf
https://owasp.org/www-pdf-archive/GOD16-NOSQL.pdf
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://tools.ietf.org/html/draft-hoehrmann-javascript-scheme-03
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html


Bibliography

[37] A. Klein, “DOM based cross site scripting or XSS of the third kind,” Web
Application Security Consortium, Articles, vol. 4, pp. 365–372, 2005.

[38] OWASP Foundation, DOM based XSS Prevention Cheat Sheet. [Online]. Avail-
able: https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_
Prevention_Cheat_Sheet.html (visited on 05/21/2021).

[39] Bohannon, David and Biehn, Travis, Exploiting the java deserialization vulner-
ability, Synopsis, 2020. [Online]. Available: https : / / www . synopsys . com /
content/dam/synopsys/sig- assets/whitepapers/exploiting- the- java-
deserialization-vulnerability.pdf (visited on 04/18/2021).

[40] OWASP Foundation, Deserialization of untrusted data, 2020. [Online]. Available:
https://owasp.org/www-community/vulnerabilities/Deserialization_of_
untrusted_data (visited on 04/18/2021).

[41] Security Tip (ST04-015) Understanding Denial-of-Service Attacks, 2019. [Online].
Available: https://us-cert.cisa.gov/ncas/tips/ST04-015#:~:text=A%5C%
20denial%5C%2Dof%5C%2Dservice%5C%20condition,resources%5C%20and%5C%
20services%5C%20are%5C%20inaccessible (visited on 04/28/2021).

[42] DDoS Overview and Incident Response Guide, 2014. [Online]. Available: https://
cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_09_DDoS_final.pdf
(visited on 04/28/2021).

[43] B. B. Gupta, R. C. Joshi, and M. Misra, “Distributed denial of service prevention
techniques,” arXiv preprint arXiv:1208.3557, 2012.

[44] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed denial-of-
service attack, prevention, and mitigation techniques,” International Journal of
Distributed Sensor Networks, vol. 13, no. 12, p. 1 550 147 717 741 463, 2017.

[45] OWASP Foundation, Denial of Service Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_
Sheet.html (visited on 04/28/2021).

[46] J. Clarke, “Code-Level Defenses,” in SQL Injection Attacks and Defense, Elsevier,
2009, pp. 341–376. doi: 10.1016/b978-1-59749-424-3.00008-6. [Online].
Available: https://doi.org/10.1016/b978-1-59749-424-3.00008-6.

[47] L. K. Shar and H. B. K. Tan, “Predicting common web application vulnerabilities
from input validation and sanitization code patterns,” in 2012 Proceedings of the
27th IEEE/ACM international conference on automated software engineering, IEEE,
2012, pp. 310–313.

123

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/exploiting-the-java-deserialization-vulnerability.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/exploiting-the-java-deserialization-vulnerability.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/exploiting-the-java-deserialization-vulnerability.pdf
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://us-cert.cisa.gov/ncas/tips/ST04-015#:~:text=A%5C%20denial%5C%2Dof%5C%2Dservice%5C%20condition,resources%5C%20and%5C%20services%5C%20are%5C%20inaccessible
https://us-cert.cisa.gov/ncas/tips/ST04-015#:~:text=A%5C%20denial%5C%2Dof%5C%2Dservice%5C%20condition,resources%5C%20and%5C%20services%5C%20are%5C%20inaccessible
https://us-cert.cisa.gov/ncas/tips/ST04-015#:~:text=A%5C%20denial%5C%2Dof%5C%2Dservice%5C%20condition,resources%5C%20and%5C%20services%5C%20are%5C%20inaccessible
https://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_09_DDoS_final.pdf
https://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_09_DDoS_final.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://doi.org/10.1016/b978-1-59749-424-3.00008-6
https://doi.org/10.1016/b978-1-59749-424-3.00008-6


Bibliography

[48] OWASP Foundation, Input Validation Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_
Sheet.html (visited on 03/23/2021).

[49] C. A. Shue, A. J. Kalafut, and M. Gupta, “Exploitable Redirects on the Web:
Identification, Prevalence, and Defense.,” in WOOT, 2008.

[50] J. Wang and H. Wu, “URFDS: Systematic discovery of Unvalidated Redirects
and Forwards in web applications,” in 2015 IEEE Conference on Communications
and Network Security (CNS), 2015, pp. 697–698. doi: 10.1109/CNS.2015.7346891.

[51] OWASP Foundation, Unvalidated Redirects and Forwards Cheat Sheet. [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_
Redirects_and_Forwards_Cheat_Sheet.html (visited on 04/29/2021).

[52] R. Shay, A. Bhargav-Spantzel, and E. Bertino, “Password policy simulation and
analysis,” in Proceedings of the 2007 ACM workshop on Digital identity management,
2007, pp. 1–10.

[53] W. C. Summers and E. Bosworth, “Password policy: the good, the bad, and
the ugly,” in Proceedings of the winter international synposium on Information and
communication technologies, 2004, pp. 1–6.

[54] K.-P. L. Vu, R. W. Proctor, A. Bhargav-Spantzel, B.-L. B. Tai, J. Cook, and E. E.
Schultz, “Improving password security and memorability to protect personal
and organizational information,” international journal of human-computer studies,
vol. 65, no. 8, pp. 744–757, 2007.

[55] CWE-521: Weak Password Requirements. [Online]. Available: https://cwe.mitre.
org/data/definitions/521.html (visited on 05/05/2021).

[56] P. A. Grassi, J. L. Fenton, E. M. Newton, R. A. Perlner, A. R. Regenscheid, W. E.
Burr, J. P. Richer, N. B. Lefkovitz, J. M. Danker, Y.-Y. Choong, K. K. Greene,
and M. F. Theofanos, “Digital identity guidelines: authentication and lifecycle
management,” Tech. Rep., Jun. 2017. doi: 10.6028/nist.sp.800-63b. [Online].
Available: https://doi.org/10.6028/nist.sp.800-63b.

[57] OWASP Foundation, “Application Security Verification Standard 4.0.2,” 2020.

[58] ——, Password Storage Cheat Sheet. [Online]. Available: https://cheatsheetseries.
owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html (visited on
04/13/2021).

[59] Sebastian Peyrott, A Look at The Draft for JWT Best Current Practices, Auth0.
[Online]. Available: https://auth0.com/blog/a-look-at-the-latest-draft-
for-jwt-bcp/ (visited on 04/11/2021).

124

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://doi.org/10.1109/CNS.2015.7346891
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/521.html
https://cwe.mitre.org/data/definitions/521.html
https://doi.org/10.6028/nist.sp.800-63b
https://doi.org/10.6028/nist.sp.800-63b
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://auth0.com/blog/a-look-at-the-latest-draft-for-jwt-bcp/
https://auth0.com/blog/a-look-at-the-latest-draft-for-jwt-bcp/


Bibliography

[60] OWASP Foundation, JSON Web Token Cheat Sheet for Java. [Online]. Available:
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_
Java_Cheat_Sheet.html (visited on 04/11/2021).

[61] George Koniaris, How to securely store JWT tokens. 2020. [Online]. Available:
https://dev.to/gkoniaris/how- to- securely- store- jwt- tokens- 51cf
(visited on 04/12/2021).

[62] Tom Abbott, Where to Store your JWTs – Cookies vs HTML5 Web Storage, 2016.
[Online]. Available: https://stormpath.com/blog/where-to-store-your-
jwts-cookies-vs-html5-web-storage (visited on 04/12/2021).

[63] OWASP Foundation, Session Management Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_
Sheet.html#cookies (visited on 04/12/2021).

[64] M. Kolšek, “Session fixation vulnerability in web-based applications,” Acros
Security, vol. 7, 2002.

[65] OWASP Foundation, Access Control Cheat Sheet. [Online]. Available: https :
//cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.
html (visited on 05/13/2021).

[66] G.-J. Ahn and R. Sandhu, “Role-based authorization constraints specification,”
ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 4,
pp. 207–226, 2000.

[67] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell,
A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone, et al., “Guide to attribute based
access control (ABAC) definition and considerations (draft),” NIST special publi-
cation, vol. 800, no. 162, 2013.

[68] Web Security, 2018. [Online]. Available: https : / / infosec . mozilla . org /
guidelines/web_security (visited on 03/15/2021).

[69] OWASP Foundation, Cross-Site Request Forgery Prevention Cheat Sheet. [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_
Request_Forgery_Prevention_Cheat_Sheet.html (visited on 03/22/2021).

[70] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request
forgery,” in Proceedings of the 15th ACM conference on Computer and communications
security, 2008, pp. 75–88.

[71] CWE-352: Cross-Site Request Forgery (CSRF). [Online]. Available: https://cwe.
mitre.org/data/definitions/352.html (visited on 03/23/2021).

125

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html
https://dev.to/gkoniaris/how-to-securely-store-jwt-tokens-51cf
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#cookies
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://infosec.mozilla.org/guidelines/web_security
https://infosec.mozilla.org/guidelines/web_security
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/352.html


Bibliography

[72] OWASP Foundation, Cryptographic Storage Cheat Sheet. [Online]. Available: https:
/ / cheatsheetseries . owasp . org / cheatsheets / Cryptographic _ Storage _
Cheat_Sheet.html (visited on 04/29/2021).

[73] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings of Federal
Information Processing Standards Publications, National Institute of Standards and
Technology, pp. 19–22, 2001.

[74] Celi, Chris and Jing, Janet, Cryptographic Algorithm Validation Program, 2021.
[Online]. Available: https : / / csrc . nist . gov / projects / cryptographic -
algorithm-validation-program (visited on 04/29/2021).

[75] M. J. Dworkin, Sp 800-38a 2001 edition. recommendation for block cipher modes of
operation: Methods and techniques, 2001.

[76] R. Chandramouli, M. Iorga, and S. Chokhani, “Cryptographic key management
issues and challenges in cloud services,” in Secure Cloud Computing, Springer,
2014, pp. 1–30.

[77] E. Barker, “SP 800-57 Part 1 Rev. 5. Recommendation for Key Management: Part
1 – General,” Tech. Rep., 2020.

[78] A. Mourad, M.-A. Laverdiere, and M. Debbabi, “Towards an aspect oriented
approach for the security hardening of code,” in 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW’07), IEEE,
vol. 1, 2007, pp. 595–600.

[79] A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of dependability.
University of Newcastle upon Tyne, Computing Science, 2001.

[80] OWASP Foundation, Error Handling Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.
html (visited on 05/05/2021).

[81] C.-Y. Hsieh, C. Le My, K. T. Ho, and Y. C. Cheng, “Identification and refactoring
of exception handling code smells in JavaScript,” Journal of Internet Technology,
vol. 18, no. 6, pp. 1461–1471, 2017.

[82] OWASP Foundation, OWASP Secure Headers Project, 2021. [Online]. Available:
https://owasp.org/www-project-secure-headers/ (visited on 03/15/2021).

[83] I. Dolnák and J. Litvik, “Introduction to HTTP security headers and implemen-
tation of HTTP strict transport security (HSTS) header for HTTPS enforcing,” in
2017 15th International Conference on Emerging eLearning Technologies and Applica-
tions (ICETA), 2017, pp. 1–4. doi: 10.1109/ICETA.2017.8102478.

126

https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://owasp.org/www-project-secure-headers/
https://doi.org/10.1109/ICETA.2017.8102478


Bibliography

[84] A. Lavrenovs and F. J. R. Melón, “HTTP security headers analysis of top one
million websites,” in 2018 10th International Conference on Cyber Conflict (CyCon),
2018, pp. 345–370. doi: 10.23919/CYCON.2018.8405025.

[85] M. Ying and S. Q. Li, “CSP adoption: current status and future prospects,”
Security and Communication Networks, vol. 9, no. 17, pp. 4557–4573, 2016. doi:
https://doi.org/10.1002/sec.1649. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/sec.1649. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/sec.1649.

[86] I. Dolnák, “Implementation of referrer policy in order to control HTTP Referer
header privacy,” in 2017 15th International Conference on Emerging eLearning
Technologies and Applications (ICETA), 2017, pp. 1–4. doi: 10.1109/ICETA.2017.
8102477.

[87] HTST Preload List Submission. [Online]. Available: https://hstspreload.org/
(visited on 03/15/2021).

[88] CSP: require-trusted-types-for. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-
trusted-types-for (visited on 03/15/2021).

[89] CSP Evaluator. [Online]. Available: https://csp-evaluator.withgoogle.com/
(visited on 03/15/2021).

[90] Referrer-Policy, 2021. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Referrer-Policy.

[91] Feature: XSS Auditor (removed). [Online]. Available: https://www.chromestatus.
com/feature/5021976655560704 (visited on 03/15/2021).

[92] Caching in HTTP. [Online]. Available: https : / / www . w3 . org / Protocols /
rfc2616/rfc2616-sec13.html (visited on 03/16/2021).

[93] About CVE, 2020. [Online]. Available: https://cve.mitre.org/about/index.
html (visited on 05/06/2021).

[94] K. Kent and M. Souppaya, “Guide to computer security log management,” NIST
special publication, vol. 92, pp. 1–72, 2006.

[95] OWASP Foundation, Logging Cheat Sheet. [Online]. Available: https://cheatsheetseries.
owasp.org/cheatsheets/Logging_Cheat_Sheet.html (visited on 04/24/2021).

[96] A. Chuvakin and G. Peterson, “How to do application logging right,” IEEE
Security & Privacy, vol. 8, no. 4, pp. 82–85, 2010.

[97] R. Marty, “Cloud application logging for forensics,” in proceedings of the 2011
ACM Symposium on Applied Computing, 2011, pp. 178–184.

127

https://doi.org/10.23919/CYCON.2018.8405025
https://doi.org/https://doi.org/10.1002/sec.1649
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1649
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1649
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1649
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1649
https://doi.org/10.1109/ICETA.2017.8102477
https://doi.org/10.1109/ICETA.2017.8102477
https://hstspreload.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-trusted-types-for
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-trusted-types-for
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-trusted-types-for
https://csp-evaluator.withgoogle.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://www.chromestatus.com/feature/5021976655560704
https://www.chromestatus.com/feature/5021976655560704
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://cve.mitre.org/about/index.html
https://cve.mitre.org/about/index.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html


Bibliography

[98] S. B. Chavan and B. Meshram, “Classification of web application vulnerabilities,”
International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 2,
no. 2, pp. 226–234, 2013.

[99] Y. Pan, “Interactive application security testing,” in 2019 International Conference
on Smart Grid and Electrical Automation (ICSGEA), 2019, pp. 558–561. doi: 10.
1109/ICSGEA.2019.00131.

[100] J. Novak, A. Krajnc, et al., “Taxonomy of static code analysis tools,” in The 33rd
International Convention MIPRO, IEEE, 2010, pp. 418–422.

[101] A. Brucker and U. Sodan, “Deploying static application security testing on a
large scale,” Sicherheit 2014–Sicherheit, Schutz und Zuverlässigkeit, 2014.

[102] F. Ö. Sönmez and B. G. Kiliç, “Holistic Web Application Security Visualization
for Multi-Project and Multi-Phase Dynamic Application Security Test Results,”
IEEE Access, vol. 9, pp. 25 858–25 884, 2021. doi: 10.1109/ACCESS.2021.3057044.

[103] OWASP Foundation, Vulnerability Scanning Tools. [Online]. Available: https:
//owasp.org/www- community/Vulnerability_Scanning_Tools (visited on
06/09/2021).

[104] Migues, Sammy and Steven, John and Ware, Mike, BSIMM 11. [Online]. Avail-
able: https://www.bsimm.com/ (visited on 05/24/2021).

[105] OWASP Foundation, OWASP SAMM. [Online]. Available: https://owaspsamm.
org/ (visited on 05/24/2021).

[106] R. Lepofsky, The manager’s guide to web application security: a concise guide to the
weaker side of the web. Apress, 2014.

[107] H. Atashzar, A. Torkaman, M. Bahrololum, and M. H. Tadayon, “A survey on
web application vulnerabilities and countermeasures,” in 2011 6th International
Conference on Computer Sciences and Convergence Information Technology (ICCIT),
IEEE, 2011, pp. 647–652.

[108] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “An
empirical analysis of xss sanitization in web application frameworks,” Technical
report, UC Berkeley, Tech. Rep., 2011.

[109] K. Peguero, “Impact of Frameworks on Security of JavaScript Applications,”
PhD thesis, The George Washington University, 2021.

[110] A. Gizas, S. Christodoulou, and T. Papatheodorou, “Comparative evaluation of
javascript frameworks,” in Proceedings of the 21st International Conference on World
Wide Web, 2012, pp. 513–514.

128

https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.1109/ACCESS.2021.3057044
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://www.bsimm.com/
https://owaspsamm.org/
https://owaspsamm.org/


Bibliography

[111] D. Graziotin and P. Abrahamsson, “Making Sense Out of a Jungle of JavaScript
Frameworks,” in Product-Focused Software Process Improvement, J. Heidrich, M.
Oivo, A. Jedlitschka, and M. T. Baldassarre, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 334–337, isbn: 978-3-642-39259-7.

[112] S. Delcev and D. Draskovic, “Modern JavaScript frameworks: A survey study,”
in 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), IEEE,
2018, pp. 106–109.

[113] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering,”
Information and Software Technology, vol. 106, pp. 101–121, 2019.

[114] J. Gläser and G. Laudel, Experteninterviews und qualitative Inhaltsanalyse: als
Instrumente rekonstruierender Untersuchungen. Springer-Verlag, 2009.

[115] J. W. Creswell and J. Creswell, Research design. Sage publications Thousand Oaks,
CA, 2003.

[116] npm scores #66. [Online]. Available: https : / / github . com / npm / feedback /
discussions/66 (visited on 05/07/2021).

[117] OWASP Foundation, “OWASP API Security Top 10 2019 - The Ten Most Critical
API Security Risks,” 2019.

[118] O. B. Al-Khurafi and M. A. Al-Ahmad, “Survey of Web Application Vulnerability
Attacks,” in 2015 4th International Conference on Advanced Computer Science Applica-
tions and Technologies (ACSAT), 2015, pp. 154–158. doi: 10.1109/ACSAT.2015.46.

[119] S. Tyagi and K. Kumar, “Evaluation of Static Web Vulnerability Analysis Tools,”
in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing
(PDGC), 2018, pp. 1–6. doi: 10.1109/PDGC.2018.8745996.

[120] S. Gupta and B. B. Gupta, “Detection, avoidance, and attack pattern mechanisms
in modern web application vulnerabilities: present and future challenges,”
International Journal of Cloud Applications and Computing (IJCAC), vol. 7, no. 3,
pp. 1–43, 2017.

[121] OWASP Foundation, Injection Theory. [Online]. Available: https://owasp.org/
www-community/Injection_Theory (visited on 03/06/2021).

[122] Ranking of the most popular database management systems worldwide, as of December
2020, 2020. [Online]. Available: https://www.statista.com/statistics/
809750/worldwide- popularity- ranking- database- management- systems/
(visited on 03/10/2021).

[123] DB-Engines Ranking, 2021. [Online]. Available: https://db-engines.com/en/
ranking (visited on 03/10/2021).

129

https://github.com/npm/feedback/discussions/66
https://github.com/npm/feedback/discussions/66
https://doi.org/10.1109/ACSAT.2015.46
https://doi.org/10.1109/PDGC.2018.8745996
https://owasp.org/www-community/Injection_Theory
https://owasp.org/www-community/Injection_Theory
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking


Bibliography

[124] Spring Data MongoDB NoSql Injection, 2018. [Online]. Available: https : / /
stackoverflow . com / questions / 51632992 / spring - data - mongodb - nosql -
injection (visited on 03/11/2021).

[125] [Online]. Available: https : / / www . npmjs . com / package / mysql (visited on
03/11/2021).

[126] HTML 5. [Online]. Available: https://www.w3.org/TR/2008/WD- html5-
20080610/dom.html#innerhtml0 (visited on 03/09/2021).

[127] Web technology for developers, 2021. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/API/Element/innerHTML.

[128] Introducing JSX. [Online]. Available: https://reactjs.org/docs/introducing-
jsx.html (visited on 03/09/2021).

[129] DOM Elements. [Online]. Available: https://reactjs.org/docs/dom-elements.
html (visited on 03/09/2021).

[130] Security. [Online]. Available: https://angular.io/guide/security (visited on
03/09/2021).

[131] ElementRef. [Online]. Available: https://angular.io/api/core/ElementRef
(visited on 03/25/2021).

[132] P. DeRyck, Preventing XSS in React (Part 2): dangerouslySetInnerHTML, 2020. [On-
line]. Available: https://pragmaticwebsecurity.com/articles/spasecurity/
react-xss-part2.html (visited on 03/09/2021).

[133] How To Write Secure Code In React, 2019. [Online]. Available: https://medium.
com/@rezaduty/how-to-write-secure-code-in-react-937579011d3c (visited
on 03/09/2021).

[134] OWASP Foundation, Deserialization Cheat Sheet. [Online]. Available: https://
cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.
html (visited on 05/31/2021).

[135] A. Chaudhary, Insecure Deserialization, 2018. [Online]. Available: https://medium.
com/@chaudharyaditya/insecure-deserialization-3035c6b5766e (visited on
04/16/2021).

[136] HTML: The Markup Language. [Online]. Available: https://www.w3.org/TR/
2012/WD-html-markup-20120329/input.email.html (visited on 03/25/2021).

[137] Validators. [Online]. Available: https://angular.io/api/forms/Validators
(visited on 03/28/2021).

[138] Validation in Spring Boot, 2021. [Online]. Available: https://www.baeldung.com/
spring-boot-bean-validation (visited on 03/28/2021).

130

https://stackoverflow.com/questions/51632992/spring-data-mongodb-nosql-injection
https://stackoverflow.com/questions/51632992/spring-data-mongodb-nosql-injection
https://stackoverflow.com/questions/51632992/spring-data-mongodb-nosql-injection
https://www.npmjs.com/package/mysql
https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/dom-elements.html
https://reactjs.org/docs/dom-elements.html
https://angular.io/guide/security
https://angular.io/api/core/ElementRef
https://pragmaticwebsecurity.com/articles/spasecurity/react-xss-part2.html
https://pragmaticwebsecurity.com/articles/spasecurity/react-xss-part2.html
https://medium.com/@rezaduty/how-to-write-secure-code-in-react-937579011d3c
https://medium.com/@rezaduty/how-to-write-secure-code-in-react-937579011d3c
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://medium.com/@chaudharyaditya/insecure-deserialization-3035c6b5766e
https://medium.com/@chaudharyaditya/insecure-deserialization-3035c6b5766e
https://www.w3.org/TR/2012/WD-html-markup-20120329/input.email.html
https://www.w3.org/TR/2012/WD-html-markup-20120329/input.email.html
https://angular.io/api/forms/Validators
https://www.baeldung.com/spring-boot-bean-validation
https://www.baeldung.com/spring-boot-bean-validation


Bibliography

[139] Class SecureRandom. [Online]. Available: https://docs.oracle.com/javase/8/
docs/api/java/security/SecureRandom.html (visited on 03/23/2021).

[140] X. de Carné de Carnavalet and M. Mannan, “From very weak to very strong:
Analyzing password-strength meters,” in Network and Distributed System Security
Symposium (NDSS 2014), Internet Society, 2014.

[141] OWASP Foundation, Authentication Cheat Sheet. [Online]. Available: https://
cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.
html (visited on 05/03/2021).

[142] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new generation of
memory-hard functions for password hashing and other applications,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2016, pp. 292–
302.

[143] 11. Authorization. [Online]. Available: https : / / docs . spring . io / spring -
security/site/docs/5.2.x/reference/html/authorization.html (visited on
04/21/2021).

[144] [Online]. Available: https://github.com/spring-projects/spring-security/
tree/master/web/src/main/java/org/springframework/security/web/csrf
(visited on 03/23/2021).

[145] Error Handling in React 16, 2017. [Online]. Available: https://reactjs.org/
blog/2017/07/26/error-handling-in-react-16.html (visited on 04/23/2021).

[146] Deployment. [Online]. Available: https://angular.io/guide/deployment (vis-
ited on 05/31/2021).

[147] Error Handling. [Online]. Available: https://expressjs.com/en/guide/error-
handling.html (visited on 03/16/2021).

[148] OWASP Foundation, Clickjacking Defense Cheat Sheet. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_
Sheet.html (visited on 04/22/2021).

[149] Auditing package dependencies for security vulnerabilities. [Online]. Available: https:
//docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
(visited on 03/12/2021).

[150] Security advisories. [Online]. Available: https://www.npmjs.com/advisories
(visited on 03/12/2021).

[151] How npm audit works? 2019. [Online]. Available: https://stackoverflow.com/
questions/55569305/how-npm-audit-works (visited on 03/12/2021).

131

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://docs.spring.io/spring-security/site/docs/5.2.x/reference/html/authorization.html
https://docs.spring.io/spring-security/site/docs/5.2.x/reference/html/authorization.html
https://github.com/spring-projects/spring-security/tree/master/web/src/main/java/org/springframework/security/web/csrf
https://github.com/spring-projects/spring-security/tree/master/web/src/main/java/org/springframework/security/web/csrf
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://angular.io/guide/deployment
https://expressjs.com/en/guide/error-handling.html
https://expressjs.com/en/guide/error-handling.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://www.npmjs.com/advisories
https://stackoverflow.com/questions/55569305/how-npm-audit-works
https://stackoverflow.com/questions/55569305/how-npm-audit-works


Bibliography

[152] Snyk Intel Vulnerability Database. [Online]. Available: https://snyk.io/product/
vulnerability-database/ (visited on 03/12/2021).

[153] [Online]. Available: https : / / www . npmjs . com / package / snyk (visited on
03/12/2021).

[154] [Online]. Available: https://retirejs.github.io/retire.js/ (visited on
03/14/2021).

[155] Log Files. [Online]. Available: https://httpd.apache.org/docs/2.4/logs.html
(visited on 05/08/2021).

[156] Source Code Security Analyzers. [Online]. Available: https://www.nist.gov/itl/
ssd/software-quality-group/source-code-security-analyzers (visited on
06/09/2021).

[157] ——, Source Code Analysis Tools. [Online]. Available: https://owasp.org/www-
community/Source_Code_Analysis_Tools (visited on 06/09/2021).

[158] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous Security
Testing: A Case Study on Integrating Dynamic Security Testing Tools in CI/CD
Pipelines,” in 2020 IEEE 24th International Enterprise Distributed Object Computing
Conference (EDOC), IEEE, 2020, pp. 145–154.

[159] Metric Definitions. [Online]. Available: https://docs.sonarqube.org/latest/
user-guide/metric-definitions/ (visited on 05/14/2021).

[160] CodeQL Documentation. [Online]. Available: https://codeql.github.com/docs/
(visited on 05/15/2021).

132

https://snyk.io/product/vulnerability-database/
https://snyk.io/product/vulnerability-database/
https://www.npmjs.com/package/snyk
https://retirejs.github.io/retire.js/
https://httpd.apache.org/docs/2.4/logs.html
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://codeql.github.com/docs/

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Research Objectives
	Research Approach
	Outline

	Fundamentals
	Input-based Vulnerabilities
	Injection
	XML External Entities (XXE)
	Cross-Site Scripting
	Insecure Deserialization
	Denial Of Service (DoS)
	Input Validation
	Open Redirects And Forwards

	Permission- and Access-based Vulnerabilities
	Broken Authentication
	Broken Access Control
	Cross-Site Request Forgery

	Configuration-based Vulnerabilities
	Sensitive Data Exposure
	Security Misconfiguration
	Using Components With Known Vulnerabilities
	Insufficient Logging And Monitoring

	Automated Tools and Processes
	Automated Tools
	Processes


	Related Work
	Methodology
	Literature
	Evaluation
	Expert Interviews
	First Interview Group
	Second Interview Group

	Data Collection
	Expert Interviews
	Library Characteristics


	Vulnerabilities
	Vulnerability Mapping
	Expert Interviews
	Scope Definition

	Mapping of Vulnerabilities to Solutions
	Input-based Vulnerabilities
	Injection
	XML External Entities
	Cross-Site Scripting
	Insecure Deserialization
	Denial Of Service
	Input Validation
	Open Redirects And Forwards

	Permission- and Access-based Vulnerabilities
	Broken Authentication
	Broken Access Control
	Cross-Site Request Forgery

	Configuration-based Vulnerabilities
	Sensitive Data Exposure
	Security Misconfiguration
	Using Components With Known Vulnerabilities
	Insufficient Logging And Monitoring


	Evaluation of Automated Tools
	Expert Interviews
	Automated Tools
	Sonarqube
	LGTM


	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Outlook

	Framework and Library Versions
	Questionnaires
	Demographic
	First Round of Expert Interviews
	Second Round of Expert Interviews

	List of Figures
	List of Tables
	Bibliography

